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Abstract

We formulate a lattice Boltzmann algorithm which solves the hydrodynamic equations of motion for nematic liquid crystals.
The applicability of the approach is demonstrated by presenting results for two liquid crystal devices where flow has an
important role to play in the switching. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we describe a lattice Boltzmann
algorithm which solves the hydrodynamic equations
of motion for nematic liquid crystals. Liquid crystals
are widely used in display devices and, as examples of
applications of the algorithm, we consider two model
devices where flow has an important role to play in the
switching.

Liquid crystals are fluids made up of rod-shaped
molecules [1]. At high temperatures and low concen-
trations the angular distribution of the molecules is
isotropic. However, as the temperature is lowered or
the concentration increased, a liquid crystal can un-
dergo a phase transition to a state where the molecules
tend to align in parallel, the so-called nematic phase.
Liquid crystals exhibit complicated, non-Newtonian
flow behaviour because of the coupling between this
molecular structure and the flow field [2]. Exam-
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ples include shear thinning and non-equilibrium phase
transitions such as banding under shear [3].

Another consequence of the ordering of nematic
liquid crystals is their widespread use in optical dis-
play devices such as those on digital watches or cal-
culators. In a typical display device, the liquid crystal
is confined between two plates a few microns apart.
The molecular configuration on the plates is fixed.
When an electric field is switched on molecules in the
bulk align in the direction preferred by the field. Af-
ter switching off the field, long-range elastic interac-
tions ensure that the molecules reorient themselves in
the direction preferred by the surfaces. These devices
can be used as displays because different liquid crys-
tal orientations have different optical properties. Flow
can be important in device operation because it can
control the speed of switching or even select the states
between which switching can occur.

Modeling flow in non-Newtonian fluids such as liq-
uid crystals is difficult because of the need to incor-
porate the coupling between the microscopic struc-
ture and the flow. The hydrodynamic equations of mo-
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tion can be extremely complex and numerical solu-
tions demanding. A method which has recently proved
very successful in modeling complex fluids is the lat-
tice Boltzmann approach [4]. Lattice Boltzmann sim-
ulations solve the hydrodynamic equations of motion
while retaining sufficient, albeit generic, molecular in-
formation to model the important physics of a given
fluid. This is often done by imposing a Landau free
energy functional, so the fluid evolves to a known ther-
modynamic equilibrium [5]. The method has been suc-
cessfully used to investigate domain growth in binary
mixtures and liquid–gas systems [6], the flow of binary
mixtures in porous media, and ordering in amphiphilic
fluids [7].

Here we construct a lattice Boltzmann algorithm to
solve the hydrodynamic equations of motion for ne-
matic liquid crystals. We follow Beris and Edwards [8]
and consider a rather general formalism of the hydro-
dynamics written in terms of a tensor order parameter,
Q. This approach lends itself to a lattice Boltzmann in-
terpretation: the partial density distribution functions
which are the usual variables in the simulations are
supplemented by a set of tensors related toQ. Back-
flow, the hydrodynamics of topological defects and
the possibility of transitions between the nematic and
isotropic phases appear naturally within the formal-
ism.

The next section of the paper summarizes the
Beris–Edwards equations of motion for liquid crystal
hydrodynamics. Section 3 describes the lattice Boltz-
mann algorithm. General viscosity terms, needed to
match to experimental viscosities, are included. The
approach is applied to switching in a Frederiks cell in
Section 4 and, in Section 5, used to confirm that back-
flow can influence state selection in a bistable liquid
crystal device.

2. Hydrodynamic equations of motion

Ordering in a nematic liquid crystal can be de-
scribed in terms of a tensor order parameterQ which
is symmetric and traceless. Expanding the free energy
in terms of the order parameter gives the Landau–de-
Gennes expression [1]
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(Greek subscripts represent Cartesian directions and
the usual summation over repeated indices is as-
sumed.) The bulk free energy termsFb describe a liq-
uid crystal with a first-order, isotropic–nematic transi-
tion at γ = 2.7 [9]. Contributions to the free energy
which arise from an imposed electric fieldE are in-
cluded inFE . Fd describes the elastic free energy [8]
andFa is a surface free energy which fixes a preferred
orientationQ0 for the surface director field.

Q evolves according to a convection-diffusionequa-
tion [8]

(∂t + u · ∇)Q − S(W,Q) = Γ H, (3)

whereu is the bulk fluid velocity andΓ is a collective
rotational diffusion constant. The term on the right-
hand side of Eq. (3) describes the relaxation of the
order parameter towards the minimum of the free
energyF,

H = − δF

δQ
+ (I/3)Tr

{
δF

δQ

}
. (4)

The order parameter distribution can be both rotated
and stretched by flow gradients. This is described by
the term on the left-hand side

S(W,Q) = (ξD + Ω)(Q + I/3)

+ (Q + I/3)(ξD − Ω)

− 2ξ(Q + I/3)Tr(QW), (5)

where D = (W + WT)/2 and Ω = (W − WT)/2
are the symmetric part and the anti-symmetric part,
respectively, of the velocity gradient tensorWαβ =
∂βuα and ξ is related to the aspect ratio of the
molecules.

The flow of the liquid crystal fluid obeys the
continuity and Navier–Stokes equations

∂tρ + ∂αρuα = 0, (6)
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is the stress due to the nematic order [8] and the
external electric field. The latter is represented by the
σM,αβ Maxwell stress tensor [10].

3. Lattice Boltzmann algorithm

A lattice Boltzmann scheme which reproduces
Eqs. (3), (6) and (7) to second order can be defined
in terms of two distribution functionsfi(x) andGi (x)

wherei labels lattice directions from sitex. Physical
variables are related to the distribution functions by

ρ =
∑
i

fi , ρuα =
∑
i

fieiα, Q =
∑
i

Gi . (9)

The distribution functions evolve in a time step*t

according to
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,

where the collision operators are taken to have the
form of a single relaxation time Boltzmann equation,
together with a forcing term
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f ∗
i and G∗

i in Eqs. (10) and (11) are first order
approximations tofi(x + ei*t, t + *t) andGi (x +
ei*t, t + *t). They are introduced to remove lattice
viscosity terms to second order and they give improved
stability.

The form of the equations of motion and thermo-
dynamic equilibrium follows from the choice of the
moments of the equilibrium distributionsf 0

i andG0
i

and the driving termspi andhi . f 0
i is constrained by

∑
i

f 0
i = ρ,

∑
i

f 0
i eiα = ρuα,

(12)∑
i

f 0
i eiαeiβ = −σ s

αβ + ρuαuβ,

where the zeroth and first moments are chosen to
impose conservation of mass and momentum. The
second moment off 0 controls the symmetric part of
the stress tensor, whereas the moments ofpi

∑
i

pi = 0,
∑
i

pieiα = ∂βσ
a
αβ,

(13)∑
i

pieiαeiβ = 0

impose the antisymmetric part of the stress tensor.
For the equilibrium of the order parameter distrib-

ution we choose

∑
i

G0
i = Q,

∑
i

G0
i eiα = Quα,

(14)∑
i

G0
i eiαeiβ = Quαuβ.

This ensures that the fluid minimizes its free energy
at equilibrium and that it is convected with the flow.
Finally the evolution of the order parameter is most
conveniently modeled by choosing
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∑
i

hi = Γ H(Q)+ S(W,Q),

(15)∑
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hieiα =
(∑
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)
uα.

Conditions (12)–(15) can be satisfied by takingf 0
i ,

G0
i , hi , and pi as polynomial expansions in the

velocity as is usual in lattice Boltzmann schemes [4].
A second-order Chapman–Enskog expansion for the
evolution equations (10) incorporating the conditions
(12)–(15) leads to the equations of motion [11].

4. Frederiks cell

One of the simplest liquid crystal devices is the
Frederiks cell depicted in Fig. 1. When the voltage
is increased above a critical valueVc switching from
the zero voltage state occurs rather rapidly. The
factor limiting the speed at which the device can be
updated is the switching from the voltage-aligned state
to that preferred by the boundaries. This switching
involves both relaxation of the free energy and viscous
dissipation associated with hydrodynamic modes [1].
Our aim is to quantitatively model this phenomenon
for a given set of elastic constants and viscosities [12].

Fig. 2 showsθ , the director angle [13] measured in
the centre of the channel, as indicated in Fig. 1, as a
function of time as the voltage is switched on and then

Fig. 1. The two stable states of a Frederiks cell. At zero voltage
the liquid crystal prefers the orientation imposed by the boundaries.
When the electric field is turned on the nematic prefers to align along
the field direction.

Fig. 2. Angleθ , with the horizontal, of the director at the centre of
the cell as a function of time. The system starts in the fully relaxed,
zero voltage state and the voltage is turned on immediately at the far
left of the plot. The voltage is turned off att = 0.

off. The parameters used for the simulation are listed
in footnote [14] and were chosen to correspond to
commercially relevant materials. For comparison, we
show relaxation data, provided by Sharp Laboratories
of Europe, taken from a simulation using a commer-
cial code which solves the Ericksen–Leslie [15] equa-
tions in one dimension. (For a similar, but not identi-
cal, Ericksen–Leslie calculation and comparison to ex-
perimental data see Ref. [16].) For the most part, there
is very good agreement between the two methods.

The “blip” seen in the plot when the voltage is
turned off is a real effect known as the optical bounce,
due to its optical signature. After the removal of the
electric field, the changing director field induces a
hydrodynamic flow. This, in turn, couples back to the
director field and causes it to momentarily move in
the “wrong” direction. Viscous dissipation in the fluid
rapidly damps out the flow and the director can then
relax toward the minimum of the free energy. The
bounce we see is somewhat higher than that observed
in the Ericksen–Leslie simulations. However recent
attempts to exactly match the quantitative features
of the optical bounce to solutions of the Ericksen–
Leslie equations have suggested that they always
underestimate its value relative to experiments [16].
Thus, the additional details in the tensor model may
be better in reproducing the experimental results.

5. Flow-induced surface switching

A current aim of the device industry is to construct
bistable displays which can remain in two different
(meta)stable states for zero field. This would, for ex-
ample, lead to significant power saving in infrequently
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Fig. 3. The two stable states (a) horizontal and (b) twist of
the surface switching device considered in Section 5. In (b) the
molecular orientation twists to perpendicular to the plane of the
figure at the middle of the sample.

updated displays or could be used in the construction
of smart cards which rely on an external power source.

In this paper we will consider one possible mecha-
nism for accessing two zero-field states, flow-induced
surface switching [17]. The two states are the horizon-
tal and the twist states shown in Fig. 3. The liquid
crystal is confined between two plates. The top (bot-
tom) plate has strong (weak) anchoring. The horizon-
tal state can be switched to the vertical state by an elec-
tric field. Then, if the field is abruptly switched off,
one might expect the system to relax back to the hori-
zontal state. The relaxation commences at the bound-
aries, where the molecules start to rotate in the same
direction at the top and bottom surfaces. If one does
not consider the effect of the backflow (equivalent to
using a Ginzburg–Landau equation to describe the dy-
namics), then this is indeed the case, as shown by the
simulation results in Fig. 4. (The simulation parame-
ters are summarized in [18]. Backflow is switched off
by setting the velocity to zero in Eq. (3).)

If, however, backflow is included, a horizontal flow
is created starting from the top plate and gradually
reaching the bottom surface. This horizontal flow
causes the molecules to rotate in the opposite direction
at the bottom surface. As a result the vertical state
transforms to a bend state, as shown in Fig. 5. There
is an energy argument which suggests that the bend
state is unstable and quickly relaxes to a twist state
[17] if the Frank elastic constantK22 is sufficiently
small compared toK11 andK33.

Fig. 4. Snapshots of the director configuration of the surface
switching device after the electric field is switched off, but backflow
effects are not incorporated in the model. The (a) vertical state
relaxes through (b) an intermediate state to (c) the horizontal state.
The snapshots correspond to 0, 7 and 15 ms. At the top surface the
molecules are strongly pinned at a 20◦ pretilt to the horizontal axis.
Pinning at the bottom surface is weak with a 0◦ pretilt.

Fig. 5. Snapshots of the director configuration of the surface
switching device after the electric field is switched off, and backflow
effects are incorporated in the model. The (a) vertical state relaxes
through (b) an intermediate state to (c) the bend state. The snapshots
correspond to 0, 1 and 6 ms.
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Hence in a bistable device, if the field is switched
off gradually, the effect of back-flow is weak, and the
liquid crystal settles in the horizontal state. If the field
is switched off abruptly, then it settles in the twist state.
When a field is reapplied both zero field configurations
switch back to the vertical state.

6. Conclusion

In conclusion, we have derived and implemented
a lattice Boltzmann algorithm for liquid crystal hy-
drodynamics. This opens the way to investigate a
wide range of physical phenomena which result from
the coupling between the director field and the flow,
many of which have been examined only indirectly or
with severe approximations in the past. Two examples
have been presented showing the relevance of flow to
switching in liquid crystal devices.
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