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Abstract - In this paper several examples for pattern generation and detection using cellular  
neural networks (CNNs) are explained. In the first part a CNN implementation of a reaction-
diffusion system is described that produces periodic, so-called Turing patterns. In the second  
part the CNN with complex-valued templates are introduced, presenting two applications for  
pattern generation.  In the third part  a method for black-and-white  pattern detection will  be 
described.

1. Introduction

The implementation of PDEs using CNN has been reported recently [5,6,11].  Turing-
patterns are introduced by A. M. Turing [1] in 1952. They appear in physics, chemistry, biology. 
The hypothetical molecular mechanism is called reaction-diffusion system, and develops periodic 
patterns  from the  initially  inhomogeneous  state.  Practically,  the  initial  state  always  contains 
inhomogeneity, and this is enough to start pattern generation.

Shigeru Kondo and Rihito Asai [2] used Turing-patterns to simulate the behavior of the 
skin of the marine angelfish  Pomacanthus. On the skin of this fish the width of the stripes is 
independent of the length of the fish. As the fish grows, new vertical stripes appear between two 
old stripes, so these stripes are not fixed in the skin. Unlike mammal skin patterns which simply 
enlarge proportionally during the body grows, these stripes maintain the spaces between the lines. 
This  is  shown in  Figure 1.  First  the  tissue contains  60 cells.  The growing was modeled  by 
duplicating 5% of the cells once in a given number of iterations. Ai denotes the concentration of 
the so-called Activator molecules that will be described soon. Three snapshots are shown in the 
case of different array sizes. It can be easily seen how new stripes appear.

In this paper, in section 2 we show a CNN model of this phenomenon. In section 3 and 4 
we show how a complex valued CNN can be implemented with two layers and used for pattern 
generation. In section 5 we show a single 1D pattern detection mechanism. 

2.  CNN  model  of  a  one-dimensional  Turing-type  reaction-diffusion 
system found in Angelfish

2.1. Stripes arising from Turing-type reaction-diffusion equations

In  the  following  section  we will  summarize  the  mathematical  background  of  pattern 
formation described in [2]. The system can be easily given by two partial differential equations. 
Starting the system from any initial condition eventually one spatial harmonic will be dominant. 
This property makes forming patterns possible.

The following reaction-diffusion equations were identified as the governing equations for 
forming patterns:
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Here x is the coordinate for the one-dimensional space, A and I are the concentrations of the two 
so-called  morphogens,  the  Activator  and  Inhibitor  molecules.  Parameters  ci ,gi and Di are 
constants:

c1=0.08 c2=-0.08 c3=0.05 c4=0.1 c5=-0.15 (2)
DA=0.007 DI=0.1 gA=0.03 gI=0.06

The first terms of the equations, called the synthesis rates  were limited:

0<(c1A+ c2I+ c3)<0.18 (3)
0<(c4A+ c5)<0.5

With this nonlinear effect we can avoid the unlimited increasing of the amplitude. The equation 
is discretized in space to model it with a 1D cellular neural network [5]:
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where  h is  the  grid  unit  and  we  used  a  simple  approximation  of  the  spatial  second  order 
derivative.  (It  should  be  discretized  in  time,  value  and  parameters  to  model  it  in  digital 
computers.)

Turing proved that one of the spatial frequency components grows faster than the others 
so it will dominate. In other words, a spatial sine wave will appear. For an infinite cell array, the 
wave-length of this dominating frequency component can be computed knowing the constants ci,  
gi, Di. Of course, in case of a finite cell array it can occur that the ratio of the number of the cells 
to the computed wave-length is not an integer. In this case the real wave-length will be near the 
computed wave-length. (For example, suppose the computed wave-length is 4 units and there are 
18 cells in the array. Either 4 waves with period length of 4.5 units, or 5 waves with period-
length of 3.6 units will appear.) Thus the wave-length is  almost independent of the array size. 
While  increasing  the  size  of  the  array,  we  reach  a  limit  size  where  the  real  wave-length 
immediately changes, i.e., a new stripe appears.
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2.2. Realization using a 1D double-layer first-order CNN

In this section the double-layer one-dimensional CNN model of the previous system is 
constructed and the phenomenon found in Angelfish is also demonstrated. The growth of the fish 
is modeled by increasing the size of the CNN cell array.

Equation (4) can be easily realized using CNN. (See also [5] and [6].) The coefficients of 
the differential equations given by Kondo and Asai will be transformed because of the saturation 
region of the cells’ nonlinearity. (The cell state must be between -1 and +1.) 

Aold=1.25Anew+2.75 (5)
Iold=Inew+2.5

where Aold, Iold are the concentrations of the two morphogens in (4), Anew, Inew are the transformed 
concentrations. Substituting (5) in equations (4) we get new equations for Anew  and Inew. 

Moreover, we do not use the previously described nonlinear effect (limiting the synthesis 
rates describing by equations (3)). The saturation feature of the cells’ nonlinearity will stop the 
growing of the stripes instead and causes deformation at the peaks of the weaves. In this case, it 
is not necessary to use the ring structure, that was applied by Turing [1]. If we force a constant 
value to the edges (fixed frame) then we can get also an appropriate result. The increase of the 
array can be also solved easier. We need not duplicate the cells inside the cell array, as in [2]. It is 
enough to add a new cell to the network at the edges.

The general form for the equations (4) given by Turing:

dA
dt

aA bI c A A A

dI
dt

dA eI f I I I

i
i i i i i

i
i i i i i

= + + + − +

= + + + − +

− +

− +

µ

ν

( )

( )

1 1

1 1

2

2
(6)

The parameters a, b, c, d, e, f, µ and ν can be easily given with ci ,gi and Di. (In fact, Turing did 
not use the  c and  f constant terms,  yet.) The cellular neural network templates implementing 
equations (6) are:

Hence, the following CNN realizes equations (4) with the parameters specified above:

A1to1=[ 0.112  0.826  0.112 ] A2to1=[ 0  -0.064  0 ]
A1to2=[ 0  0.125  0 ] A2to2=[ 1.6  -2.26  1.6 ] (8)
I1=-0.01 I2=-0.025

A1to1=[ µ    (a-2µ+1)   µ ]  A2to1=[ 0    b     0 ] I1=c
A1to2=[ 0           d    0 ] A2to2=[ ν    (e-2ν+1)     ν ] I2=f (7)
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The phenomenon found in Angelfish can be modeled in the following way. We start the 
network that produces Turing-patterns. (The initial state is a random noise.) When the network 
reaches the steady state a new cell is added at the right edge of the cell array. Then we start the 
network and wait again. This sequence can be repeated several times.

This can be seen in Figure 2. First, as shown in Figure 2.a, the array consists of 50 cells. 
There are only two peaks. Then the size of the CNN block grows. After every 37.5τ a new cell is 
added at the right edge. In Figure 2.b reaching array size of 51 cells there are still only two peaks, 
but the second one begin to change. When reaching 52 units array size, the second peak splits, 
and after a time two new peaks evolve from it. This is shown in Figure 2.c and 2.d.

2.3. Realization using a single-layer CNN with second order cells

Turing-type reaction-diffusion equations or Turing-patterns can be generated by a single 
layer CNN with second-order cells, too. ([7]) Consider equation (6) without any nonlinear effect. 
The structure of the cell solving these equations can be seen in Figure 3.a. The two state variables 
Ai and  Ii, are the voltages of the two capacitors. The capacitances are not equal. The coupling 
between the two state variables is implemented by a resistor. Two current sources play the role of 
the constants c and f. Figure 3.b shows how the cells are connected to each other. Fortunately, the 
template matrices are symmetrical so resistors can be used for the intercell-coupling.

3. Complex valued CNN templates and their implementation

Complex neural cells and networks were introduced in [10,12], where so-called  multi-
valued cells  and  complex  templates  were  used.  In  the  realization  presented  here  both  the 
templates and the states are complex. All complex variables are represented by their real and 
imaginary parts.

The state equation of the complex-valued CNN is:
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where j= − 1. The templates of the complex-valued CNN are:

layer feedback control current
Complex: AR+jAI BR+jBI IR+jII

4



The complex equation can be separated into two real equations:
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The complex-valued CNN can be realized by a double-layer real-valued CNN given below:

layer feedback control current
Real: Self: AR BR IR

From Imaginary: -AI -BI

Imaginary: Self: AR BR II

From Real: AI BI

4. Pattern generation with complex-valued templates

Here some applications of the complex-valued CNN templates will be used to generate 
one-dimensional periodic patterns and we will compare these solutions to the single-layer real-
valued CNN implementations. We will see that in the case of complex-valued CNN the template 
size is only 3×1, in the case of the real-valued CNN it is 5×1.

4.1. Sine wave generation with a band-pass filter A template

We  have  seen  in  the  case  of  Turing-patterns  that  one  of  the  spatial  harmonic  was 
amplified  stronger than others, after a lapse of time it was dominant. In other words, a sine wave 
appeared. This idea can be used in other structures, too. We design a CNN (with a band-pass 
filter  A template)  to  achieve  that  starting  from  any initial  state  eventually  only one  spatial 
harmonic remains ([9,13]).

An autonomous CNN is described, that has a zero B template and I bias. Suppose that we 
are in the linear domain of the output nonlinearity. In this case the equation of a CNN cell for the 
one-dimensional case is the following:

C dv
dt R

v A i k vxi
xi

k i r
xk= − +

− ≤
∑1 ( ; ) (11)
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Here  r is the neighborhood in which the cells have interconnected neighbors. For the sake of 
simplicity, choose capacitance C=1 and resistor R=1. Introducing the so-called convolution mask 
ai   the template A can be given in the following way:

[ ]A a a a a a a ar o r= + − − −... ( ) ...2 1 1 21 (12)

equation (11) can be expressed using spatial convolution denoted by ‘*’:

d
dt v t a v txi i xi() * ()=  (13)

Let a[ω] be the spatial spectrum of ai and v[ω](t) the spatial spectrum of the state vxi at 
time t. Then v[ω](t) can be expressed in the following way :

v[ω](t)=v[ω](0)ea[ω]t (14)

If the real part of a[ω]  is positive then the amplitude of the ω spatial frequency component will 
increase.  If  the  real  part  is  negative  then  the  amplitude  of  this  frequency component  will 
decrease. If the real part of a[ω] is positive only in interval  [ω0-∆ω,ω0+∆ω]  then the network 
will  increase  only the  amplitude  of  the  frequency components  around  ω0.  Practically,  in  a 
physical system the initial state contains all of the frequency components. If only the previously 
mentioned ones increase then a complex harmonic with frequency ω0 will appear. The network 
operates as a band-pass filter amplifying only the spatial frequency components of the initial state 
around ω0.

Next,  we  design  a  template  A having  such  an  a[ω]  spatial  spectrum.  Consider  the 
following complex-valued CNN template:

A(ω0)=[ a⋅e-jω0   (b+1)   a⋅ejω0 ] B=[ 0 ] I=0 (15)

where a, b, ω0 are constants to be computed in the following part. The spectrum of ai will be

a[ω]=2a⋅cos(ω-ω0)+b (16)

If a>0 and b>0 then the spectrum is maximum at ω=ω0, and the value of the maximum is

max a[ω]=a[ω0]=2a+b (17)
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We require that a[ω]>0 fulfills only around ω0. This can be achieved with the proper settings of 
a and  b, i.e.,  max a[ω] must be a small positive value. The larger  max a[ω]  , the faster the 
growing of the waves. 

Assume,  we generate  sine waves  with period-length  L=10.  The frequency  ω0 can be 
computed in this well-known way:

ω0=2π /L (18)

Thus  ω0=0.628.  Choose  a=0.25,  b=-0.4.  Thus  max a[ω]=2a+b=0.1>0.  The complex-valued 
templates:

A=[ 0.202-0.147j    0.6    0.202+0.147j ] B=[ 0 ] I=0 (19)

In Figure 4 and 5 the generation process can be seen, in case of random initial state and a single 
spike, respectively. Only the output of the first layer is presented, because the graphs for the 
second layer would be qualitatively similar. At settled state both layers contain a spatial sine 
wave.

With a greater template  size the sine wave generation can be realized also by a real-
valued CNN with 5×1 templates: 

where a and b are positive constants. Similar to the previous case, they must be chosen knowing 
that the maximum of the spectrum must be a small positive value.

max a[ω]=a[ω0]= 2a(1+2cos2(ω0))+b (21)

Thus the realization with real-valued templates needs a larger template size.

4.2. Sine wave generation with series given by recursive formula

In this section a new method will be introduced to generate sine waves with complex-
valued templates. Here again an autonomous CNN will be presented. In this structure due to the 
one-directional coupling between cells  the steady-state of a cell  can be computed only if the 
previous cell reached the steady-state, so a cell must “wait” for its neighbor. Thus the structure 
presented here provides inherently serial execution.

The following series describes a spatial complex harmonic:

vi=Kejωi (22)

A=[ -a  4a⋅cos(ω0)  (b+1)  4a⋅cos(ω0)  -a ] B=[ 0 ] I=0 (20)
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where  K is a constant. Given the first element, it can be equivalently described by a recursive 
formula:

vi =ejω vi-1 (23)

This recursive definition can be used to construct a CNN capable of producing this series:

A=[ ejω  0  0 ] B=[ 0 ] I=0 (24)

We fill  K  into the first cell and keep this cell fixed. Then after the transient settled the 

second cell will contain  Kejω, the third  Kej2ω, etc. The operation of the network is shown in 
Figure 6.

The sine wave generation with series given by recursive formula can be solved also by a 
single-layer CNN with real-valued 5×1 templates:

Here the recursion involves the two left neighbors not only one. If K is filled into the first two 
cells of the network and their states are kept fixed then after a lapse of time a sine wave with 
frequency ω will appear. Both methods can be used to generate stripes with controlled stripe-
density. This can be seen in Figure 7.

5. 1D black and white pattern detection with 3×1 templates

In this section a new method for pattern detection on a one-dimensional black-and-white 
image is given. The main problem is to measure the length of a black or a white stripe with the 
CNN that  contains  only locally interconnected cells.  Thus we have to measure a stripe with 
length  of  20-30  units  with  a  CNN  that  has  a  template  size  of  3  units.  First  an  algorithm 
independent  of  the  implementation  will  be presented  then  the  realization  with  CNN will  be 
described. The solution proposed here uses a series given by a recursive formula.

As  mentioned  above,  first  an  algorithm  independent  of  the  implementation  will  be 
explained. Suppose, that we want to detect a stripe series containing black stripes with length of 
5 units and 3 units space between them. (Thus the required pattern consists of black and white 
stripes with length of 5 and 3 units, respectively.)

A=[ -1    2cos(ω)    0    0    0 ] B=[ 0 ] I=0 (25)
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Addition of row 2 and 3      
Required value for row 4    
Subtraction of row 5 from 4 

Table II. Algorithm for stripe detection. The  pattern to detect  contains black stripes with length  
of  5 units  and 3 units  space between them. If there is  a zero in the last  row then there the  
algoritm detected  the desired stripes. 

The steps of the detecting algorithm are the following (See also Table II):
Step 1 Count from left to right and put the result in row 1. Restart counting, if the actual element 

and the previous one of the black and white input image are different (i.e., if the border 
of a single-colored area is reached).

Step 2 Count from right to left in a similar way and put the result in row 2.
Step 3 Add row 1 and the row 2 and put the result in row 3. There is under a black or a white 

area its length plus one. To decide whether there are the desired stripes or no, we must 
compare  the  elements  of  the  fourth  row with  5+1=6 under  a  black  stripe  and with 
3+1=4 under a white stripe

Step 4 Write in row 4 the value  with which we should compare the elements of row 3 to detect 
the stripes with the desired length.

Step 5 Subtract of the row 5 from row 4 and put the result in row 5. If it is zero then there the 
required stripe series was found.

Next,  the implementation in CNN will be described. It will be a multi-layer network, 
although it can be implemented in CNN Universal Machine, too. In the case of a multi-layer 
network additional data transfer and digital hardware are not necessary, the execution speed can 
be higher.

First a method is described to implement a “counter” with CNN. The following single-
layer network realizes this function:

A=[ 1  0  0 ] B=[ 0 ] I=U (26)

Here the constant U is the unit of incrementation. In Table II. it was one, but now it is chosen to 
avoid reaching the cells’ saturation region. For example, it can be 0.05. Fill 0.05 into the cell v0 
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and keep it  fixed,  then after  a lapse of time we get  0.1 in  v1,  0.15 in  v2,  etc.  This  network 
produces a series given by the following recursive formula:

vi=vi-1+0.05 (27)

Note, that in this case a cell must wait for the previous cells, so the execution will be serial. The 
more cells we have the more time the transient takes. (In the final solution it does not cause a 
problem.)

Next, a solution is explained to control this incrementation implementing the function of 
the first step of the algorithm presented in Table II. The following network restarts counting at 
the borders of the stripes. (The analyzed black and white image is applied onto the input of the 
network. The black color is described by +1.0, the white color by -1.0. The value of the frame is 
0.0. It means, that we force zero to the inputs of the cells at the edges, that  are out of the regular 
CNN structure.)

A=[ n(vui-vu,i-1)  0  0 ] B=[ 0 ] I=U (28)

n x
if x
if x

( )
, .
, .

=
<
≥





1 01
0 01

This type of nonlinear template (so-called switched template) is introduced in [8]. The variable 
element of the A matrix depends on the actual cell states. It is 1, if the colors of the actual and the 
previous cell  are identical,  and 0,  if  they differ. Thus the count restarts  at  the border of the 
stripes. The steady state of the network is:

v
v U if v v

U if v vxi
x i u i u i

u i u i
=

+ =
≠





− −

−

, , ,

, ,

,
,

1 1

1
(29)

 Some snapshots of the output during the transient can be seen in Figure 8.
Next, a three-layer structure is presented, that measures the length of a black or a white 

stripe. The analyzed image is applied onto the input of the first layer. In steady state the output of 
the third layer contains information about the length of the single-colored stripes of the input 
pattern, realizing the first three steps of the algorithm in Table II. The templates of the network 
are the following: 

A1to1=[ n(v1ui-v1u,i-1)  0  0 ] B1to1=[ 0 ] I1=U

A2to2=[ 0  0  n(v1ui-v1u,i+1) ] B2to2=[ 0 ] I2=U (30)

A1to3=[ 0  1  0 ] B3to3=[ 0 ] I3=0
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A2to3=[ 0  1  0 ]
A3to3=[ 0 ]
 
The first layer counts from left to right, the second one from right to left, the third one adds the 
previous two layers. If a pixel of the input image is a part of an L long single-colored stripe then 
in the third layer the steady state of the corresponding cell will be (L+1)U:

v v v L Uxi xi xi3 1 2 1= + = +( ) (31)

In  the  following  part  a  three-layer  network  detecting  black  and  white  patterns  is 
described, in other words, the whole algorithm shown in Table II. is realized. The pattern to find 
contains Lb unit long black stripes and Lw unit long white stripes. To detect this pattern the state 
of the third layer must be compared with (Lb+1)U in the case of black stripes, and with (Lw+1)U 
in the case of white stripes. Fortunately, this comparing function can be built in the third layer, 
hence we get the following network: 

(32)

Consider  a  pixel  of  a  black  or  a  white  stripe  of  length  L in  the  input.  In  steady state  the 
corresponding point of the third layer will contain 

v v v L L U v L L U v v L U v
v v L U vxi xi xi b w ui b w

xi xi b ui

xi xi w ui
3 1 2 1

1 2 1

1 2 12
2

2
1 1
1 1

= + − − − + + =
+ − + = +
+ − + = −
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( ) ,
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(33)
Taking

v v L Uxi xi1 2 1+ = +( ) (34)

into consideration the following equations are obtained:

v
LU L U v
LU L U vxi

b ui

w ui
3

1

1

1 1

1 1
=

− + = +
− + = −





( ) ,

( ) ,

 i f 

 i f 
(35)

A1to1=[ n(v1ui-v1u,i-1)  0  0 ] B1to1=[ 0 ] I1=U

A2to2=[ 0  0  n(v1ui-v1u,i+1) ] B2to2=[ 0 ] I2=U

A1to3=[ 0  1  0 ] B1to3=[ 0   -(Lb-Lw)U/2  0 ] I3=-(Lb+Lw+2)U/2
A2to3=[ 0  1  0 ] B3to3=[ 0 ]
A3to3=[ 0 ]
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In the case of a white stripe the state of the third layer is zero if the length is Lw, and in the case 
of a black stripe it is zero if the length is Lb. We compare L with different values depending on 
the color of the stripe. This is due to the usage of B1to3 that affects from the input of the first layer 
to the third layer.

To detect zero level the third layer has a special output nonlinearity:

f x
if x n U
if x n U

( )
, ( . )
, ( . )

=
< +

− ≥ +




1 05
1 05 (36)

With the parameter n the tolerance of the required stripe length can be determined. If it is zero 
then stripes having exactly the desired length will be detected. If it is a positive integer then ±n 
units deviance is allowed in stripe-length. 

The operation of the network can be seen in Figure 9. The input of the network is the 
picture to examine. The result is obtained at the output of the third layer. The black areas show 
that there an Lb unit long black stripe or an Lw unit long white stripe was found.

In fact this network uses a series given by a recursive formula to measure the length of a 
stripe,  and  it  means  partly serial  execution.  The  longer  the  sought  stripe  is  the  longer  the 
execution time is, however, the execution time does not depend on the size of the examined area. 
Thus we can exploit the higher speed of parallel processing.

4. Conclusions

In this paper several examples for pattern generation and detection were introduced. First 
the CNN implementation of a reaction diffusion system was described that produced  Turing-
patterns.  It was also used to model  the behavior of the skin pattern of the marine  angelfish 
Pomacanthus. This example showed that the CNN paradigm could serve as a general frame for 
several problems, e.g.,  modeling partial differential equations. These kinds of problems can be 
easily expressed in this way and then the CNN simulator gives an easy-to-use way for numerical 
computations and experiments.

Second the CNN with complex-valued  templates was introduced.  Unlike usual CNN 
now all the templates, the states, the inputs and the outputs were complex. It was shown how a 
complex-valued  CNN could  be  built  of  two  real-valued  CNN layers.  This  new structure  is 
sufficient in case of several problems, especially when complex quantities are used (e.g., filters, 
problems concerning the frequency domain). Here two applications was explained: sine wave 
generation with a band-pass filter  A template and another method generating sine waves on the 
basis of a series given by a recursive formula. 

Third a method for black-and-white pattern detection was described. This example shows 
how to avoid the drawbacks of the CNN’s local nature. This structure can detect 20-30 unit long 
black or white stripes with templates of size only 3x1. The algorithm used to measure the length 
of a stripe can be implemented in digital computers, too.
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7. Figures

Figure 1. Stripes in an increasing cell array. At start the length of the cell block is 60. After a  
given time it increases by 5%. (One inner cell of a 20 cell block is duplicated.) Three snapshots  
are shown. (a) Two stripes and 60 unit long array. (b)  Three stripes and 90 unit long array. (c) 
Four stripes and 115 unit long array.
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(a) (b)

(c) (d)
Figure 2. Stripes generated by CNN. The size of the CNN block grows. After every 37.5τ a new 
cell is added at the right edge. The sizes of the array are (a) 50, (b) 51, (c) and (d) 52. When the 

size of the array reaches 52 a new stripe appears.
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(a)

(b)

Figure 3. Implementing Turing-equations  using a CNN with second-order cells. (a) One cell  
and (b) intercell-connections The two state variables are the voltages of the cpacitors, denoted 

by Ai  and Ii, respectively.
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(a) (b)

(c)

Figure 4. Generating spatial sine waves (with period-length of 10 units) designing in the 
frequency domain.  The cells reached the saturation region, and it deforms the sinusoidal shape. 

(a) The random initial state, and the output of the real layer after (b) 10 and (c) 100τ can be 
seen.
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(a) (b)

(c)

Figure 5. Generating spatial sine waves (with period-length of 10 units) designing in the 
frequency domain. The cells reached the saturation region, and it deforms the sinusoidal shape. 
(a) The initial state (that is a peak), and the output of the real layer after (b) 30 and (c) 60 τ can 
be seen. After 100τ the whole area is filled with sine peaks.
 

18



(a) (b)

(c)

Figure 6. Generating sine waves (with period-length of 40 units) with complex-valued CNN 
templates. The state of the first cell is set to 0.8, and it is kept fixed. Zero is filled into the states  
of the other cells. It can be seen that the wave propagates from right to left. (a) The initial state 

and the output of the real layer can be seen after (b) 20 and (c) 60τ. After 100τ the whole area is  
filled with sine peaks.
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Figure 7. Generating stripes using frequency modulation by a control image. The image seems 
to be two-dimensional, in spite of this the network contains independent one-dimensional  

networks in the lines. The two-dimensional feature is due to the control image. 
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(a)

(b)

(c)

(d)

Figure 8. “Counting” from left to right The settled state of a cell is larger by 0.05 than the 
settled state of the previous cell and the count restarts at the border of a black or a white stripe.  

(a) The input. The output after (b) 3τ, (c) 6τ and (d) at settled state.
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(a)

(b)

(c)

(d)
        

   (e)

Figure 9. Detecting a pattern containing 8 unit long black stripes and 4 unit long space. (a) The 
input contains the black and white pattern to examine. (b) The output of the first layer shows 

"counting" left to right. This counting restarts at the borders of a black or a white area. (c) The 
output of the second layer shows counting right to left. (d) The state of the third layer is zero 

only under a black stripe of 8 units or a white stripe of 4 units. (e) The output of the third layer is  
black only if the state is near zero. It is achieved by a special output nonlinearity to detect zero 

level.
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