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We construct entanglement witnesses using fundamental quantum operators of spin models which contain
two-particle interactions and have a certain symmetry. By choosing the Hamiltonian as such an operator, our
method can be used for detecting entanglement by energy measurement. We apply this method to the Heisen-
berg model in a cubic lattice with a magnetic field, theXY model, and other familiar spin systems. Our method
provides a temperature bound for separable states for systems in thermal equilibrium. We also study the
Bose-Hubbard model and relate its energy minimum for separable states to the minimum obtained from the
Gutzwiller ansatz.
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I. INTRODUCTION

Entanglement lies at the heart of quantum mechanics and
also plays an important role in the field of quantum informa-
tion theory (QIT) [1]. While for pure quantum states it is
equivalent to correlations, for mixed states the two notions
differ. In this general case, a quantum state is entangled if its
density matrix cannot be written as a convex sum of product
states. Based on this definition, several sufficient conditions
for entanglement have been developed[1]. In special cases,
e.g., for 232 (two-qubit) and 233 bipartite systems[2],
and for multimode Gaussian states[3], even necessary and
sufficient conditions are known.

However, in an experimental situation, usually only lim-
ited information about the quantum state is available. Only
those approaches for entanglement detection can be applied,
which require the measurement of not too many observables.
One such approach is using entanglement witnesses. They
are observables which have a positive expectation value or
one that is zero for all separable states. Thus a negative ex-
pectation value signals the presence of entanglement. The
theory of entanglement witnesses has recently been rapidly
developing[4]. It has been shown how to generate entangle-
ment witnesses that detect states close to a given one, even if
it is mixed or a bound entangled state[5]. It is also known
how to optimize a witness operator in order to detect the
most entangled states[6].

Beside constructing entanglement witnesses, it is also im-
portant to find a way to measure them. For example, they can
easily be measured by decomposing them into a sum of lo-
cally measurable terms[7]. In this paper we follow a differ-
ent route. We will construct witness operators of the form

WO ª O − inf
CPS

fkCuOuClg, s1d

whereS is the set of separable states, “inf” denotes infimum,
and O is a fundamental quantum operator of a spin system
which is easy to measure. In the general case infCPSkCuOuCl
is difficult, if not impossible, to compute[8]. Thus we will
concentrate on operators that contain only two-particle inter-
actions and have certain symmetries. We derive a general
method to find bounds for the expectation value of such op-
erators for separable states. This method will be applied to

spin lattices. We will also consider models with a different
topology.

If observableO is taken to be the Hamiltonian, then our
method can be used for detecting entanglement by energy
measurement[9]. While our approach does not require that
the system is in thermal equilibrium, it can readily be used to
detect entanglement for a range of well-known systems in
this case. The energy bound for separable states correspond
to a temperature bound. Below this temperature the thermal
state is necessarily entangled. Numerical calculations have
been carried out for some familiar spin models. They show
that for the parameter range in which substantial entangle-
ment is present in the thermal ground state, our method de-
tects the state as entangled. Thus our work contributes to
recent efforts connecting QIT and the statistical physics of
spin models[10].

II. ENERGY BOUND FOR SEPARABLE STATES

We consider a general observableO on a spin lattice de-
fined in terms of the Pauli spin operatorssW skd

=fsx
skd ,sy

skd ,sz
skdg as

Oª OshsW skdjk=1
N d, s2d

whereO is some multivariable function[11]. We will discuss
how to find the minimum expectation value of such an op-
erator for separable states of the form

r = o
l

plrl
s1d

^ rl
s2d

^ . . . ^ rl
sNd. s3d

The minimum ofkOl for pure product states is obtained
by replacing the Pauli spin matrices by real variablessx/y/z

skd in
Eq. (2) and minimizing it with the constraint thatsWskd are unit
vectors[12]. The minimum obtained this way is clearly valid
also for mixed separable states, since the set of separable
states is convex

Osepª inf
CPS

kCuOuCl = inf
hsWskdj

OshsWskdjk=1
N d. s4d

In the most general case many-variable minimization is
needed for obtainingOsep. In some cases, to which many of
the most studied lattice Hamiltonians belong, it is possible to
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find a simple recipe for computing the minimum ofO.
(i) Let us consider an operatorO which is the sum of

two-body interactions. It can be described by a lattice or a
graph. The verticesVª h1,2, . . . ,Nj correspond to spins and
the edges between two vertices indicate the presence of in-
teraction.

(ii ) Let us assume that this lattice can be partitioned into
sublattices in such a way that interacting spins correspond to
different sublattices. Figure 1 shows lattices of some com-
mon one- and two-dimensional spin models. The different
symbols at the vertices indicate a possible partitioning into
sublattices with the above property. For simplicity, next we
will consider the case with only two disjoint sublattices,A
andB, and assume thatO can be written in the form

OshsWskdjk=1
N d = o

sWk
APA,sWk

BPB

fssWk
A,sWk

Bd, s5d

wheref is some two-spin function, andsWk
A/B denotes spins of

sublatticeA/B.
If conditions(i) and(ii ) are met, then it is enough to find

spinssWA and sWB corresponding to the minimum offssWA,sWBd.
Then, setting all the spins in sublatticeA to sWA and in sublat-
tice B to sWB, respectively, gives a solution which minimizesO.

III. EXAMPLES

In the following we will use the HamiltonianH for con-
structing entanglement witnesses. The energy minimum for
separable states is the same as the ground state of the corre-
sponding classical spin model. Our method detects entangle-
ment if

DEª kHl − Esep, 0. s6d

If DE,0 then uDEu characterizes the state of the system
from the point of view of the robustness of entanglement. It
is a lower bound on the energy that the system must receive
to become separable.

We will use the previous results to detect entanglement in
thermal states of spin models. In thermal equilibrium the

state of the system is given asrT=exps−H /kBTd /
Trfexps−H /kBTdg, whereT is the temperature andkB is the
Boltzmann constant. For simplicity we will setkB=1. Using
Eq. (6) a temperature bound,TE, can be found such that
whenT,TE, then the system is detected as entangled.

A. Heisenberg lattice

Let us consider an antiferromagnetic Heisenberg Hamil-
tonian with periodic boundary conditions on ad-dimensional
cubic lattice

HH ª o
kk,ll

sx
skdsx

sld + sy
skdsy

sld + sz
skdsz

sld + Bsz
skd. s7d

The strength of the exchange interaction is set to beJ=1, B
is the magnetic field, andkk, ll denotes spin pairs connected
by an interaction. The expectation value of Eq.(7) for sepa-
rable states is bounded from below

kHHl ù EH,sepª H− dNsB2/8 + 1d if uBu ø 4

− dNsuBu − 1d if uBu . 4
J , s8d

whereN is the total number of spins. This bound was ob-
tained using two sublattices, minimizing the expression
fHssWA,sWBdªsWAsWB+Bssz

A+sz
Bd /2. Based on this, EH,sep

=dN infffHg [13].
Let us now consider a one-dimensional spin-1/2 Heisen-

berg chain of even number of particles. IfB=0 then Eq.(8)
corresponds to

1

N
o
kk,ll

ksW skdsW sldl ù − 1, s9d

which is simply a necessary condition for separability in
terms of nearest-neighbor correlations. The energy minimum
for entangled states can be obtained using the Bethe ansatz as
Emin=−4Nsln 2−1/4d<−1.77N [14]. The energy gap be-
tween the minimum for separable states and the ground-state
energy ofHH is thusDEgap<0.77N, which increases linearly
with the number of spins. As shown in Refs.[16,17], when
B=0 the concurrence of the two-qubit reduced density ma-
trix in the thermal state is obtained asC=maxf−skHHl /N
+1d /2 ,0g. HenceC.0 if kHHl,−N and EH,sep coincides
with the energy bound for nonzero concurrence.

Let us now consider the caseB.0. Figure 2(a) shows the
nearest-neighbor entanglement versusB andT. The entangle-
ment of formation was computed from the concurrence[15].
Light color indicates the region where the thermal ground
state is detected as entangled. There are regions withC.0
which are not detected. However, it is clear that when the
system contains at least a small amount of entanglement
s,0.07d the state is detected as entangled. Note that the
sharp decrease of the nearest-neighbor entanglement around
Bcrit =4 for T=0 is due to aquantum phase transition.

Another important question is how the temperature bound
TE depends on the number of particles. For the Heisenberg
model of even number of spins withB=0 this temperature
decreases slowly withN and saturates atT<3.18. Reference
[17] finds the same bound temperature for nonzero concur-
rence for an infinite system.

FIG. 1. Some of the most often considered lattice models:(a)
Chain,(b) two-dimensional cubic,(c) hexagonal, and(d) triangular.
Different symbols at the vertices indicate a possible partitioning
into sublattices.
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B. XY model

TheXY Hamiltonian on ad-dimensional cubic lattice with
periodic boundary conditions is

HXYª o
kk,ll

Jxsx
skdsx

sld + Jysy
skdsy

sld + Bo
k

N

sz
skd. s10d

The energy of separable states is bounded from below

kHXYl ù EXY,sepª H− dNMs1 + b2/4d if b ø 2,

− dNMb if b . 2.
J s11d

HereJx/y is the nearest-neighbor coupling along thex/y di-
rection, B is the magnetic field,MªmaxsuJxu , uJyud and
bª uBu /M. This bound is simply the mean-field ground-state
energy. It was obtained using two sublattices and minimizing
fXYssWA,sWBdªJxsx

Asx
B+Jysy

Asy
B+Bssz

A+sz
Bd /2.

A one-dimensional spin-1/2 Ising chain is a special case
of an XY lattice with Jx=1 andJy=0. Figure 2(b) shows the
nearest-neighbor entanglement as a function ofB andT for
this system. According to numerics,TE (computed forB=1)
decreases with increasingN. For N=` we obtainTE<0.41
[18].

C. Heisenberg coupling between all spin pairs

From a theoretical point of view, it is interesting to con-
sider a system in which the interactions are described by a
complete graph rather than a lattice[19]. For the following
Hamiltonian ofN spin-1/2 particles,

HSª Jx
2 + Jy

2 + Jz
2, s12d

the expectation value for separable states is bounded[20]

kHSl ù ES,sepª 2N. s13d

HereJx/y/z=oksx/y/z
skd and for simplicityN is taken to be even.

Now we could not use the method for partitioning the
spins into sublattices. The proof of Eq.(13) is based on the
theory of entanglement detection with uncertainty relations
[20,21]. For separable states one obtains[20]

sDJxd2 + sDJyd2 + sDJzd2

ù o
l

plo
k

fsDsx
skddl

2 + sDsy
skddl

2 + sDsz
skddl

2g ù NLS, s14d

where index l denotes the lth subensemble and
LS=infCfsDsxdC

2 +sDsydC
2 +sDszdC

2 g=2. Hence Eq.(13) fol-
lows. The measured energy even gives information on the
entanglement properties of the system. Based on the previous
considerations, it can be proved that the number of unen-
tangled spins is smaller thankHSl /2.

Following the approach of Ref.[16], the concurrence can
be computed as a function of the energy. For evenN the
concurrence is C=maxh−fkHSl+NsN−4dg / f2NsN−1dg ,0j.
Since for all quantum stateskHSlù0, the concurrence is zero
for any temperature ifNù4. Thus our condition can detect
multiqubit entanglement even when two-qubit entanglement
is not present.

The thermodynamics ofHS can be obtained by knowing
the energy levels and their degeneracies[22],

Ej = 2js j + 2d, dj =
s2j + 1d2

N/2 + j + 1
S N

N/2 + j
D , s15d

where 0ø j øN/2. Approximating the binomial in Eq.(15)
by a Gaussian, and taking the limitN→` while keeping
T/N constant, we obtainkHSl<3NT/ sT+2Nd and TE<4N,
which is in agreement with our numerical calculations. Thus
TE increases linearly withN, the reason being that the num-
ber of two-body interaction terms increases quadratically
with the system size.

D. Bose-Hubbard model

Consider now a lattice model, the one-dimensional Bose-
Hubbard model, in which the number of particles can vary
on the lattice sites. We use the language of second quantiza-
tion. Each lattice site corresponds to a bosonic mode with a
destruction operatorak. The Hamiltonian is[24]

HB ª − Jo
kk,ll

ak
†al + akal

† + Uo
k

ak
†ak

†akak, s16d

whereJ is the intersite tunneling andU is the onsite interac-
tion. Let us consider the case when there is at most a single
particle per lattice sitesU@Jd [25]. Then, for separable
states the energy is bounded from below as

FIG. 2. (a) Heisenberg chain of eight spins. Nearest-neighbor
entanglement as a function of magnetic fieldB and temperatureT.
(b) The same for an Ising spin chain. HerekB is the Boltzmann
constant,J andJx are coupling constants. Light color indicates the
region where entanglement is detected by our method.
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kHBl ù EB,sepª − 2JNbs1 − Nb/Nd, s17d

whereN is the number of lattices sites andNbª kokak
†akl is

the number of bosonic particles. ForN=10 andNb=N/2
(half filling) we obtainTE<0.69J.

Equation(17) can be proved as follows. Let us consider a
site in a pure stateuCl=au0l+bu1l such thatuau2+ ubu2=1.
For this single-site stateukalu= uabu and ka†al= ubu2. Hence
ukalu2=ka†als1−ka†ald. Now using okk,llkak

†lkall+H.c.
ø2okukaklu2 one can show thatEB,sep is an energy bound for
product states. It is a bound also for mixed separable states of
the form Eq.(3) sinceEB,sepsNbd is a convex function.

Remarkably, the energy minimum for separable states
equals the minimum for translationally invariant product
states. In other words, it equals the energy minimum ob-
tained from the Gutzwiller ansatz[23] if the expectation
value of the particle number is constrained toNb. Note that
for our calculations we assumed that there is at most a single
atom per lattice site.

E. Physical realization

The above methods can be used for entanglement detec-
tion in the following ways:(i) Energy can be directly mea-
sured in some systems(e.g., optical lattices of cold atoms

[24] when used to realize the Bose-Hubbard model). (ii ) The
temperature can be measured and used for entanglement de-
tection.(iii ) The expectation value of the Hamiltonian can be
obtained indirectly if the correlation terms of the Hamil-
tonian are measured. For example, average correlations
okksa

skdsa
sk+1dl /N; a=x,y,z can be measured in a Heisenberg

chain realized with two-state bosonic atoms[26]. From these
correlationskHHl can be computed.

IV. CONCLUSION

In summary, we used the Hamiltonian for witnessing en-
tanglement in spin models. We also considered bosonic lat-
tices. Our further results concerning this system will be pre-
sented in a future publication[27]. While our method works
for nonequilibrium systems, we have shown that entangle-
ment can efficiently be detected by measuring energy in a
thermal equilibrium.
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