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We show that backflow, the coupling between the order parameter and the velocity fields, has a signifi-
cant effect on the motion of defects in nematic liquid crystals. In particular, the defect speed can depend
strongly on the topological strength in two dimensions and on the sense of rotation of the director about

the core in three dimensions.
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Topological defects arise in all areas of physics from
cosmic strings [1] to vortices in superfluid helium [2].
Although the physical systems are very different, many
aspects of the observed phenomena match even quanti-
tatively, making it possible to test cosmological predictions
experimentally in condensed matter systems [1]. Defects
are classified according to their topological strength, and
in many cases, the symmetries of the field equations lead
to dynamics where defects of opposite topological strength
can be mapped into each other. In this Letter, we show an
example, of topological line defects in liquid crystals [3],
where this symmetry is broken, due to the coupling to an
additional field, the flowfield, or to elastic constants that
are not equal.

In liquid crystals the topological defects are moving
within a liquid and therefore one must expect hydrody-
namics to play an important role in their dynamics. In
particular, as the defects move, the coupling between the
changing director field and the velocity field (so-called
backflow) may play a significant part in the motion. Ex-
perimental evidence [4] shows that this is indeed the case
when a nucleated domain where the director field is hori-
zontal grows in a twist or vertical environment due to the
influence of the surfaces or an external electric field. The
speed of the domain boundary is found to depend strongly
on the local defect configuration.

Previous investigations [5—8] of defect dynamics have
either ignored the flow field or taken account of its effect
phenomenologically. Here we aim to generalize this work
by treating the full hydrodynamic equations of motion for
a nematic liquid crystal. We consider the annihilation of a
pair of defects of strength s = *1/2. We find that back-
flow can change the speed of defects by up to ~100%.
Defects of different strength couple to the flow field in
different ways. This leads to a dependence of speed on
strength which can occur either as a result of the backflow
or if the elastic energy is treated beyond a one-elastic con-
stant approximation.

The hydrodynamics of liquid crystals is often well de-
scribed by the Eriksen-Leslie-Parodi equations of motion,
which are written in terms of the director field. However,
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these are restricted to an uniaxial order parameter of con-
stant magnitude. Thus they are inadequate to explore the
hydrodynamics of topological defects where the magnitude
of the order parameter has a steep gradient and becomes
biaxial within the core region [9]. Here we consider the
more general Beris-Edwards [10] formulation of nemato-
hydrodynamics, where the equations of motion are written
in terms of a tensor order parameter Q.

The equilibrium properties of the liquid crystal are de-
scribed by a Landau—de Gennes free energy density [3].
This comprises a bulk term
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which describes a first order transition from the isotropic
to the nematic phase at y = 2.7, together with an elastic
contribution
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where the L’s are material specific elastic constants. The
Frank expression for the elastic energy, written in terms
of the derivatives of the director, can be simply mapped
to (2) [10]. A controls the relative magnitude of f;, and
fa. The Greek indices label the Cartesian components of
Q, with the usual sum over repeated indices.

The dynamics of the order parameter is described by
the equation

(9 +u-V)Q — S(W,Q) =TH, ©)
where u is the bulk fluid velocity and T" is a collective
rotational diffusion constant. The term on the right-hand

side of Eq. (3) describes the relaxation of the order pa-
rameter towards the minimum of the free energy F
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The term on the left-hand side is

S(W.Q) = ((D + ©)(Q +1I/3) +(Q + I/3)({D — Q) — 2£(Q + 1/3) Tr(QW), (&)

where D = (W + W7)/2 and Q@ = (W — WT)/2 are the symmetric part and the antisymmetric part, respectively, of
the velocity gradient tensor W, g = dgu. ¢ is related to the aspect ratio of the molecules.
The velocity field # obeys the continuity equation and a Navier-Stokes equation with a stress tensor generalized to

describe the flow of nematic liquid crystals

1
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where p and T are the density and temperature. Notice that |

the stress (6) depends on the molecular field H and on Q.
This is the origin of backflow. Details of the equations of
motion can be found in Ref. [10]. Equations (1)—(6) were
solved numerically using a lattice Boltzmann algorithm
described in [11].

Consider a pair of defects of topological strength s =
+1/2 situated a distance D apart in a nematic liquid crys-
tal, as shown in Fig. 1(a). We consider a two-dimensional
cross section of the two line defects, assuming that the
order parameter does not change in the perpendicular di-
rection (although the director may point out of this plane).
The two defects are topologically distinct only in two di-
mensions, but even in three dimensions they are separated
by an energy barrier for the typical elastic constants we
study here.

A phenomenological equation of motion can be written
down by assuming that the attractive force between the two
defects [3] is counterbalanced by a friction force [7]

dD _
D= = moln "(D/R.), ©)

where D is the defect separation, R, is the defect core size,
and u( is a constant.

In Ref. [8] the director field and the trajectory of the de-
fects were obtained analytically and the defect velocity was
determined as a function of parameters of the medium. (A
review of the earlier development of the theory of defect
dynamics is also given in [8].) However, this and, as far as
we are aware, all other analyses of defect dynamics have
ignored backflow. This means that the approach to equilib-
rium is relaxational, determined entirely by the derivative
of the free energy with respect to the order parameter, with
the flow playing no role. A further simplification in previ-
ous work is that the Frank elastic constants were assumed
to be equal.

We can examine relaxational dynamics using a
Ginzburg-Landau equation for the director field [12],
i.e., Eq. (3) with the velocity set to zero. The Ginzburg-
Landau equation with a single elastic constant is invariant
under a local coordinate transformation mirroring the
director on the x axis (where we define x as the axis
connecting the two defects cores). This corresponds to
the transformation
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The order parameter fields of the two defects with topo-
logical charges s = *1/2 transform into each other. Thus
approaches based on a simple Ginzburg-Landau equation
predict that when the defects move they follow symmetric
dynamical trajectories.

Figure 2(a) shows the position of two annihilating topo-
logical defects, with topological charge s = +1/2 (up-
per curve) and s = —1/2 (lower curve), as a function of
time. Figure 2(b) shows the velocities of the defects as the
function of their separation D. (See footnote [13] for the
simulation parameters.)
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FIG. 1. (a) The director field of two annihilating topological
defects with strength s = *1/2. (b) Velocity field of the two
defects.
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FIG. 2. (a) Positions of the defects as a function of time. Up-

per (lower) curves are for s = +1/2(—1/2). The different lines
correspond to a Ginzburg-Landau model (dashed), the hydrody-
namic equations of motion with I' = 6.25 Pa~'s™! (solid), and
with T' = 7.76 Pa~'s™! (dotted). (b) Defect speed as a func-
tion of separation. Upper and lower solid curves: the s = +1/2
and s = —1/2 defect trajectories with hydrodynamics and I" =
6.25; Dashed curve: Ginzburg-Landau model. The +1/2 defect
is considerably (100%) accelerated for D > 0.25 um compared
to the results of the Ginzburg-Landau model. The speed of the
—1/2 defect is only slightly affected by the backflow.

Consider first the dashed trajectories. These were ob-
tained with the flow field switched off, the case for which
Eq. (3) reduces to a Ginzburg-Landau model. As expected
the two defects move with the same speed and annihilate
halfway between their initial positions [marked by a hori-
zontal line in Fig. 2(a)]. The results for the Ginzburg-
Landau model fit the simple formula (7) for wo =
124 um?/s and R, = 0.0233 um for D = R.. Around
D ~ R, the formula overestimates the defect speed.

Consider the effect of the backflow under the transfor-
mation of Eq. (8). Examining the stress tensor one can
see that the last term in Eq. (6) does not change under the
transformation but the off-diagonal elements of the other
terms have their sign inverted. This reflects the two sources
of backflow in this problem. The first has to do with the
defect core. Order is suppressed in the core, which results
in an increase in viscosity at the core (the isotropic vis-
cosity ay, is proportional to (1 — ¢)? where ¢ is the mag-
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nitude of the order [10,11]). As a result, the movement of
the core induces similar vortices to those produced when a
solid cylinder is moved through a fluid. This flow is inde-
pendent of the sign of the defect, and points into the direc-
tion of defect propagation at the core. The second source of
backflow comes from the reorientation of the director field
away from the core. This flow depends on the sign of the
spatial derivative of the director orientation. As a result,
these two sources of flow reinforce in one case and par-
tially cancel in the other, thus giving the anisotropy. The
flow field around the defects is depicted in Fig. 1(b). A
strong velocity vortex pair is formed around the +1/2 de-
fect, with the flow pointing in the direction of defect propa-
gation. The flow around the —1/2 defect is much weaker,
and points opposite to the direction of defect motion.

The solid line in Fig. 2(a) corresponds to a simulation
of the full hydrodynamic equations of motion (1)—(6).
There is a marked decrease in the time to coalescence.
This is primarily because the speed of the s = +1/2
defect is increased by ~100% compared to the case
without flow for D = 0.25 um. The s = —1/2 defect
is only slightly affected by the backflow; the change in
velocity is less than 20%. Because of the speed anisotropy
the defects do not meet halfway between their initial
positions. For defects initially 1 um apart the displace-
ment of the coalescence point (Ax; = 0.149 um) is
smaller than might be expected from the substantial
speed-up of the s = +1/2 defect. This is because the
relative flow-induced increase in velocity drops dramati-
cally near the defect core (D =< 0.25 um) where the
defects are moving the fastest. At these short separations
the relaxational dynamics dominates the hydrodynamics.

Changing the various material parameters of the sample
will affect the velocity of the defects and their speed
anisotropy. We find, as expected, that as the viscosity in the
Navier-Stokes equation increases the motion approaches
that of the Ginzburg-Landau model. Increasing I" in (3)
increases the speed of relaxation to the minimum of the
free energy, thus increasing the speed of the defects. The
speed anisotropy, however, decreases because the weight
of the free energy relaxation process is increased relative
to the hydrodynamics. For example, the dotted curve in
Fig. 2(a) corresponds to I' = 7.76 Pa~!s™! (compared to
I = 6.25 Pa~!s™! for the solid curve). The displace-
ment of the coalescence pointis Ax; = 0.128 pum < Ax;.
Decreasing A in the free energy (1) increases the defect
size. The defects move faster but the velocity disparity de-
creases, again because the importance of the relaxational
dynamics is increased relative to the hydrodynamics.

The results in Fig. 2 are for a single elastic constant
(equal Frank elastic constants or, equivalently, L, =
Lz = 0). If a more general model for the elasticity is
considered, allowing L, # 0 or L; # 0O, the invariance
of the Ginzburg-Landau equation under the transforma-
tion (8) is broken. Therefore one might expect a difference
in the velocities of s = *1/2 defects even if backflow is
not considered.
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This is indeed the case. If L, = Oand L3 < 0 (L3 > 0)
the s = +1/2 (s = —1/2) defect moves faster. For ex-
ample,if L; = 8.73 pN, L, = 0,and L3 = 15.88 pN [14]
a comparison of the velocities v4/2,v-1/2 of the s =
1/2 and s = —1/2 defects, respectively, gives a speed
anisotropy a, = (V412 — v_1/2)/(W) ~ —13%
at a defect separation D = 0.5 um. For comparison, the
anisotropy caused by the backflow is ~ + 68%. The dis-
placement of the coalescence point is Ax = 0.029 um.
For most materials L3 > 0 (corresponding to K11 < K33),
leading to a speed anisotropy opposite to that arising from
the hydrodynamics.

If L, # 0 and L3 = 0 the velocity anisotropy is very
small since for these values of the elastic constants the
relaxational Ginzburg-Landau dynamics remains invariant
under the mapping (8) in the limit of uniaxiality and con-
stant magnitude of the order parameter [15]. The speed
anisotropy is small because these conditions are only re-
laxed within a defect core. For example, L3 = 0 and
L, = 15.88 pN [16] leads to |a,| < 2%.

Anisotropies in the speed of domain walls of up to 50%
have been observed in experiments on pi-cell liquid crystal
devices where the movement of twist and splay-bend walls
is important in mediating the formation of the operating
(bend) state from the ground (splay) state. Defects form
spontaneously at these walls and preliminary simulations
show that backflow effects are responsible for the veloc-
ity anisotropy [17]. It is also of interest to investigate the
role of defect motion in many other new generation liquid
crystal devices. For example, multidomain nematic modes
improve viewing angles at the expense of introducing de-
fects into the director profile and understanding the behav-
ior of such defects as the electric field is varied will help
control device performance. In zenithal bistable nematic
devices switching is between two (meta) stable zero-field
states. Switching between the states is mediated by the
movement of topological defects [18].

To conclude, we have used a formulation of nemato-
dynamics based on the tensor order parameter to study
the hydrodynamics of topological defects in nematic liquid
crystals. We find that the coupling between the order pa-
rameter field and the flow has a significant effect on defect
motion: in particular, it introduces a substantial difference
between the velocities of defects of different topological
charge. Similar but smaller velocity anisotropies can re-
sult from changing the elastic constants.
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