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What is the Quantum-dot Cellular
Automata paradigm?

The QCA concept is a transistorless alternative of nowadays
circuit technology for digital computing at nanoscale.Why do
we need alternatives? Because scaling down traditional transitor
based circuits has its own limits.

Problems at nanoscale:

■ Few carriers in the nanocurrent

■ Barriers that modulate current can leak

■ Difficult to cascade devices: Need to transform
small current into substantial voltage (V) to
switch next device.

Solution: do not code information with charged current, do not
switch current on and off.



The QCA cell

Structure: four quantum dots, two extra electrons, tunneling is
possible between adjacent dots

Two bistable states belonging to polarization P=+1 and P=-1,
respectively
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The QCA intercell coupling

Nonlinear cell-to-cell response function

Coulombic coupling between cells.
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Complex QCA structures

Majority gate: A

B

C

Output

Cell line:

NOT:

M(A,B,C)MB
C

A

Fan-out:

(AND/OR)



Adiabatic switching

Remove
old input

Applying
new input

Lower
barriers

Raise
barriers

The solution of a logical problem is mapped to the ground state
of a physical system:ground state computing.

Problem: the trajectory is not controlled, we may end up in a
metastable state.

Solution: during an adiabatic process we stay near ground
state, thus the trajectory can be controlled.

Lowering the barriers between applying the old and the new
inputs increases the energy difference between the ground state
and the first excited state.



Possible QCA implementations

(1. Metal island implementation with single electron tunneling
circuits)

2. Semiconductor quantum-dot implementation

3. Molecular implementation

+Vin

-Vin

+Vout

-Vout

Vgin Vgout

Output double-dotInput double-dot

Successful experiments at 70mK
Modeled as quasi classical
circuit. (Capacitance, charging
energy instead of Hamiltonian,
wave function ...)

Quantum
dynamics



Quantum dynamics of QCA I.

A cell is approximated as a two-state system. The Hamiltonian
for a cell line of N cells is

whereγ is the tunneling energy. It is zero if the interdot barriers
are high, and there is no tunneling. It is large, if the barriers are
low and tunneling is easy.Ek is the “kink energy”. This is the
energy of two cells being oppositely polarized.

The polarization is defined as

Ĥ γ– σ̂x i( )
i 1=

N

∑
Ek
2

------– σ̂z i( )σ̂z i 1+( ),
i 1=

N 1–

∑=

P i( ) σ̂z i( )〈 〉–=



Quantum dynamics of QCA II.

1. Dynamics based on the Schrödinger equation:

.

The state vector is a 2N element vector. The size of the
Hamiltonian is 2N*2N.

2. Dynamics based on density matrices (Liouville equation):

.

The size of the density matrix is 2Nx2N. Advantage: density
matrices can describe mixed state/decoherence.

ih
t∂

∂ ψ| 〉 Ĥ ψ| 〉=

ih
t∂

∂ ρ̂ Ĥ ρ̂,[ ]=



Redundancies in the density matrix

The elements of anMxM density matrix are not independent
from each other.

M2 complex = 2M2 real elements

Hermiticity --> M2 real constraints

Trace is unity --> 1 real constraints

Real degrees of freedom=2M2-M2-1=M2-1.

How can we extract the “informative” part of the density
matrix?



Dynamics with the coherence vector
If the real degrees of freedom for anMxM density matrix are
M2-1 then the MxM density matrix can be written as a linear
combination of M2-1 basis operators.

.

Question: what basis operators should we choose?

For a two state system (a single QCA cell), the density matrix is
2x2.The three basis operators are the three Pauli spin matrices.

; a=x,y,z.

The three element vector containing ’s is called the
coherence vector.

(Mahler, Weberruss: Quantum Networks, Springer)
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---1̂
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Basis operators for a cell line
For N coupled two level systems (coupled QCA cells) the basis
operators are the form of:

.

Some of the basis operators for N=3:

, , .

Now the coherence vector has 22N-1=4N-1 elements. (The
density matrix has 2x22N real elements.)
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Coherence vector description of a single cell

The Hamiltonian of a cell with a driver

Time dependence of the Pauli spin matrices in the Heisenberg
picture:

.

Dynamical equation for the coherence vector:

Ĥ γ σ̂x–
Ek
2

------Pdriverσ̂z+=

td

dσ̂x i
h
--- σ̂x Ĥ,[ ]– EkPdriverσ̂y= =
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dσ̂z i
h
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Coherence vector description of two cells
For two cells the basis operators are:

, , ; -->

, , ; -->

, , ;

, , ; -->  (correlation)

, , .

The 15 element coherence vector is constructed as

. The dynamics are given as .

σ̂x 1( ) σ̂y 1( ) σ̂z 1( ) λ 1( )

σ̂x 2( ) σ̂y 2( ) σ̂z 2( ) λ 2( )

σ̂x 1( )σ̂x 2( ) σ̂x 1( )σ̂y 2( ) σ̂x 1( )σ̂z 2( )
σ̂y 1( )σ̂x 2( ) σ̂y 1( )σ̂y 2( ) σ̂y 1( )σ̂z 2( ) K 1 2,( )
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λ
λ 1( )

λ 2( )
K 1 2,( )

=
td

d λ Ω̂ t( )λ=



Coherence vector description of two cells

λ 1( ) λ 2( )

K 1 2,( )

Notice: the state variables of a multi-cell state can be divided
into variables corresponding to the first cell, to the second cell
and to the two-cell correlations. The state vector description do
not have this feature.



Coherence vector description of a cell line

In the general case, the basis operators are:

■ Single cell operators, like , , .

■ Two-cell operators, like , .

■ Three-cell operators, like .

■ N-cell operators ...

The coherence vector contains the expectation values of all these
operators. The expectation values of the two cell operators are
the two-point correlations, the expectation values of the three
cell operators are the three-point correlations.

σ̂x 1( ) σ̂z 3( ) σ̂y 4( )

σ̂z 1( )σ̂x 3( ) σ̂z 2( )σ̂y 7( )

σ̂z 1( )σ̂y 2( )σˆ
x 3( )



The number of state variables increases
exponentially with the number of cells

λ=(λx,λy,λz) λ(1) λ(2)

K

Kxx

Kxy

Kxz

…
Kzz

=

coherence

correlation

N QCA cells together have more

degrees of freedom than N-times

the degrees of freedom one cell has.

DOF

N

vector

vector



Dynamical equations

λ1
Κ

λ2 td

dλ1 f λ1 K,( )=
td

dλ2 f λ2 K,( )=

td
dK

f K λ1 λ, , 2( )=

Two cells

Many cells

...

...

λi

Κi

higher

The hierarchy of
dynamical equations
must be truncated in
order to get a computa-
tionally feasible model.

order correlations
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td
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Truncation of the hierarchy of
equations

nn two-point
correlation
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Two-point correlations
■ The elements of  are defined as

; .

■ The elements of thetwo-pointcorrelation vector  are

; .

■ The elements of thetwo-pointcorrelation vector proper
 are defined as

.

If the two cells are uncorrelated then the  is zero.

λ k( )
λa k( ) σ̂a k( )〈 〉= a x y z, ,=

K k l,( )
Kab k l,( ) σ̂a k( )σ̂b l( )〈 〉= a b, x y z, ,=

M k l,( )
Mab k l,( ) σ̂a k( ) σ̂a k( )〈 〉–( ) σ̂b l( ) σ̂b l( )〈 〉–( )×〈 〉=

Mab k l,( ) Kab k l,( ) λa k( )λb k( )–=

M k l,( )



The intercellular Hartree approximation

Reducing the number of state variables assuming

.

Thus all the two point correlations can be approximated as

. (Similar to <AB>=<A><B>.)

This model does not keep correlations at all.

Mab k l,( ) Kab k l,( ) λa k( )λb k( )– 0= =

Kab k l,( ) λa k( )λb l( )=



Three-point correlations

Similarly the three-point correlation is defined as

; .

The three-point correlation proper is given as

or

.

Kabc k l m, ,( ) σ̂a k( )σ̂b l( )σ̂c m( )〈 〉= a b c, , x y z, ,=

Mabc k l m, ,( )
σ̂a k( ) σ̂a k( )〈 〉–( ) σ̂b l( ) σ̂b l( )〈 〉–( ) σ̂c k( ) σ̂c k( )〈 〉–( )××〈 〉

=

Mabc k l m, ,( ) Kabc k l m, ,( ) Kab k l,( )λc m( )– –=

Kac k m,( )λb l( ) Kbc l m,( )λa k( )– 2λa k( )λb l( )λc m( )+



Keeping only the two-point correlations
Taking all three-point correlation propers to be zero, the three-
point correlations can be obtained from lower order
correlations:

.

Hence

.

Justification: the three-point correlation proper is small.

Mabc k l m, ,( ) Kabc k l m, ,( ) Kab k l,( )λc m( )– –=

Kac k m,( )λb l( ) Kbc l m,( )λa k( )– 2λa k( )λb l( )λc m( )+ 0=

Kabc k l m, ,( ) Kab k l,( )λc m( ) Kac k m,( )λb l( )+ +=

Kbc l m,( )λa k( ) 2λa k( )λb l( )λc m( )–



Reducing the number of state variables

# of
cells

Hartree
method

(no
correla-
tions)

Nearest-
neighbor

pair-
correla-

tions
only

Pair-
correla-

tions
only

Size of
state

vector
for the
exact
model

Size of
density
matrix

1 3 3 3 2 4

2 6 15 15 4 16

3 9 27 36 8 64

5 15 51 105 32 1024

10 30 111 435 1024 4x106

15 45 172 990 32768 109

... ... ... ... ... ...

N 3N 12N-9 4.5N2-
1.5N

2N 22N
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Line of five QCA cells - Dynamics
of pair correlations proper

Exact model

Model
keeping the
nearest neighbor
two-point
correlations

0 500
0

0.1

0.2

0 500

−1

−0.5

0

0 500
−0.2

−0.1

0

0 500

−1

−0.5

0

0 500
−0.4

−0.2

0

0 500
−0.2

0
0.2
0.4

0 500
−0.1

−0.05

0

0 500
−0.2

0

0.2

0.4

0 500
0

0.2

0.4

0 500
0

0.1

0.2

0 500

−1

−0.5

0

0 500
−0.2

−0.1

0

0 500

−1

−0.5

0

0 500
−0.4

−0.2

0

0 500
−0.2

0
0.2
0.4

0 500
−0.1

−0.05

0

0 500
−0.2

0

0.2

0.4

0 500
0

0.2

0.4

Mxx

Mxx

100xMxy

100xMxy

Mxz

Mxz

100xMyx Myy

Mzz

100xMyz

100xMzy

Mzx

100xMyx
Myy

Mzz

100xMyz

100xMzy

Mzx

time

time



N a n o D e v i c e s U N I V E R S I T Y  O F  N O T R E  D A M E

Pdriver(1)=+1

Pdriver(6)=+1

Pdriver(5)=-1

gate cell

output cell

(wrong)

1

2

3

4

5

6 7 8

9 Poutput1=-1

Majority gate with unequal input
legs -the output is wrong with the
Hartree approximation
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Conclusions

■ The Quantum-dot cellular automata (QCA), as a
transistorless alternative of traditional circuit technology
was introduced.

■ The coherence vector formalism was presented.

■ The formalism was used to interpret correlations.

■ The formalism was used to decrease the number of variables
used for state description.

■ The model makes it possible to include as much correlation
as necessary to get the correct dynamics.

http://www.nd.edu/~gtoth

cond-mat/0104406
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