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Introduction�
In an experiment the density matrix is usually not
known, only partial information is available on the
quantum state. One can typically measure a few
observables and still would like to detect some of
the entangled states. Finding a criterion for entan-
glement with easily measurable observables is cru-
cial for entanglement detection.�
There are only few such criteria in the literature.
One of them is described in Ref. [1] for detecting
entanglement in a two-mode system. One just has
to measure the second moments of x and p for both
systems. For example, if the inequality�

∆
�
xA � xB ��� 2 � � ∆ � pA � pB ��� 2 � 2 (1)

is fulfilled, then the state is entangled [1].�
This criterion is equivalent to an entanglement wit-
ness if local unitary operations are allowed. A gen-
eralization of Ineq. (1) is a sufficent and necessary
condition for entanglement of two-mode Gaussian
states [1,2].

The detected state�
If one has N photons and sends them through a
beam splitter or if one has N atoms in some internal
state and applies a laser pulse, the state will be�

Ψ �
	 1�
2NN!

�
a† � b† � N � 0 � 0 � (2)

Here a and b are annihilation operators which are
defined according to xA 	 � a � a† ��
 � 2. This state
is not detected by the previous criterion as it will be
demostrated later.�
We will present a criterion which: (i) requires mea-
suring quantities which are easily accessible exper-
imentally and; (ii) detects entangled states close to
state (2).�
The criterion is quartic in operator expectation val-
ues and it cannot be reduced to an entanglement
witness, even with the application of local unitary
operations.

Entanglement criterion�
Our main result: For all separable states, i.e. states
that can be written as

ρ 	 ∑
k

pkρA
k � ρB

k �
the following expression with the variances of the
total particle number N : 	 a†a � b†b and

�
a � b �

are bounded from below as� �
∆ρN � 2 � 1 � � � ∆ρ

�
a � b ��� 2 � 1 ����� N � ρ4 � 1

8 � (3)

where
�
∆ρA � 2 : 	�� A†A � ρ � � � A � ρ � 2 (note that

A need not be Hermitian).�
Physical motivation [3]: it is not possible to
have a fixed particle number — corresponding to�
∆ρN � 2 	 0 — and perfect interference — corre-

sponding to
�
∆ρ
�
a � b ��� 2 	 0 — at the same time,

unless the system under consideration is in an en-
tangled state. Only highly non-classical states can
exhibit particle-like and wave-like features simulta-
neously.

Outline of proof�
The criterion is deduced from a simpler necessary
condition for separability

w
�
∆ρN � 2 � � 1 � w � � ∆ρ

�
a � b ��� 2 � fw

� � N � ρ � � (4)

where 0 � w � 1 and fw
�
N � is a monotonic function

of N. All states violating this inequality are entan-
gled.�
Ineq. (4) is based on a single-mode uncertainty
relation

w
�
∆ρNA � 2 � � 1 � w � � ∆ρa � 2 � Lw

� � NA � ρ � �
where NA 	 a†a and

Lw
�
N � 	�� w

�
1 � w � � N � 1

4 ��� w
4 � 1

2 �
The function fw

�
N � for Ineq. (4) can be obtained

as fw
�
N � 	 Lw

�
N ��� L

�
0 � .�

Our main result (3) is obtained by finding the region
detected as entangled by (4) with any w ��� 0 � 1  .

The ! ∆N " 2 – ! ∆ ! a # b "$" 2 plane�
Our method detects entangled states in the prox-
imity of (2) on the

�
∆ρN � 2 –

�
∆ρ
�
a � b ��� 2 plane.�

Numerical verification of the inequality (3) for the
two-mode separability problem. (red) Boundary of
the region defined by Ineq. (3) for N 	 200. All
states below this line are entangled. The

�
0 � 0 �

point corresponds to the state (2). (blue) Points cor-
responding to separable states found numerically.
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Realizations with BEC�
The state (2) can be obtained in a Bose-Einstein
condensate, by preparing the atoms in the same
internal state and then applying a π 
 2 laser pulse.

/2 laser pulseπ
Each atom is in the superposition
of the two states�

The entanglement between the modes a and b is
physically much more meaningful, if the two modes
are spatially separated. This could be be done for
example by a state-dependent potential.

Realization with photons�
The state (2) can be prepared using a 50 
 50 beam
splitter and a laser pulse corresponding to the�
Ψ � � � 0 � state. After the second beam splitter ide-

ally one gets back the
�
Ψ � � � 0 � state. The de-

tectors measure the particle numbers in the two
modes. In oder to detect entanglement, assuming
perfect destructive interference at the second beam
splitter, for the photon source

�
∆N � 2 % N 
 4 � 7 
 8

is required. This requirement is satisfied, for exam-
ple, by a number-squeezed coherent state.
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Correlation matrix�
The entangled state (2) is not detected by the
method based on the correlation matrix [1,2]. The
correlation matrix γ contains the correlations of two
pairs of conjugate single-party observables

γkl 	 Tr + ρ � Rk � � Rk � � � Rl � � Rl � �-,� Tr + ρ � Rl � � Rl � � � Rk � � Rk � �-, �
Here + Rk , 	 + xA � pA � xB � pB , , xA 	 �

a � a† ��
 � 2,
pA 	 �

a � a† ��
 � � 2i � , and xB and pB are defined
similarly for the b mode.�
The sufficient condition for inseparability is

TaγTa � iJ . 0 �
where TaγTa is the correlation matrix corresponding
to the partially transposed density matrix and Jkl 	
i �Rk � Rl  .

�
For the state (2) the TaγTa � iJ matrix is positive
definite, thus the state is not detected as entangled.

Conclusions�
A simple inequality for the expectation values of ob-
servables was proposed for entanglement detec-
tion.�
Since only the measurement of easily accessible
quantities (particle numbers and particle number
variances) are needed, this approach may be fea-
sible for detecting entanglement experimentally in
Bose-Einstein condensates or with photons using
linear optics.�
Other necessary conditions for separability could
be constructed with the variances of two commut-
ing operators. For example, entangled states close
to the

�
N � 0 � � � 0 � N � Schrödinger cat state could

be detected by measuring the variances of N and�
a†b � N � � ab† � N .
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