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Quantum information science

Analytic aspects

Quantum mechanics

Quantum optics

Constructive aspects

Quantum engineering, creating large quantum states, entanglement

Quantum cryptography, quantum communication

Quantum metrology

Quantum computing, quantum simulation
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Quantum mechanics

Basic tools have been developed in the 1930’s:

Schrödinger equation,

von Neumann equation i ∂%
∂t = [H , %],

state function, state vector |Ψ〉.

density matrix %,

Dirac equation.

However, one thing was missing:

it was difficult to test this model since individual particles could not
be observed.
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Quantum optics

LASER, 1959: a new system in which quantum mechanics was
important.

They developed a formalism to describe light modes in 1960’s

annihilation, creation operators (like Ψ and Ψ+ in field theory)

coherent states (light fields we see in practice)

Fock states (states with given particle number)

Wigner function (even before) W (x ,p)

light-atom interaction, photon detection, superradiance, etc.

However, one thing was still missing:

they could not observe few particles in a correlated quantum state.

They could see only many particles interacting with light, where the
particles did not interact with each other.



Question

Do individual particles exist?

Or they are only a tool for modeling?
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Qubits vs. bits

A quantum bit (=two-state system, spin-1
2 particle) can be in a

pure state
|q〉 = α0|0〉+ α1|1〉,

where α0 and α1 are complex numbers, and the normalization
condition |α0|

2 + |α1|
2 = 1.

Two qubits can be in a state

|q1q2〉 = α00|0〉 ⊗ |0〉+ α01|0〉 ⊗ |1〉+ α10|1〉 ⊗ |0〉+ α11|1〉 ⊗ |1〉.

N qubits can be in a state that is the superposition of 2N basis
states→ exponential scaling.



Trapped cold ions

Manipulating small number of particles, and accessing the
particles individually.

Examples: trapped cold ions

Innsbruck, Austria.



Trapped cold ions II: Qubits

Ion as a qubit

0

1



Trapped cold ions III
Two-state ions trapped in an electromagnetic field

Coulomb-repulsion keeps them apart from each other.

Phonon bus: the internal states can be coupled

Oscillates Does not oscillate



Trapped cold ions IV

Quantum tomography of an eight ion quantum state giving the
density matrix (Blatt group, Nature, 2005, Innsbruck, Austria):

The state is the state that they wanted to create:

|W 〉=
1
√

6
(|10000000〉+ |01000000〉+ ... + |00000001〉).



Trapped cold ions V

Greenberger-Horn-Zeilinger (GHZ) state

|GHZ〉 =
1
√

2
(|00...00〉+ |11..11〉)

In another context, Schrödinger’s cat state.

Some experiments:
3 particles, Nature 2001. (NIST, Boulder, Colorado)

14 particles, Phys. Rev. Lett 2013. (Innsbruck, Austria)



Optical lattices of cold atoms

Superfluid-Mott insulator phase transition, MPQ, Munich.
[ Greiner, Mandel, Esslinger, Hänsch & Bloch, Nature 2002 ]



Optical lattices of cold atoms II

Hamiltonian: Bose-Hubbard model for two-state atoms:

H = Ja

∑
k

aka†k+1 + a†kak+1

+ Jb

∑
k

bkb†k+1 + b†kbk+1

+
∑

k

Uana,k (na,k − 1)

+ Ubnb,k (nb,k − 1) + Uabna,knb,k .

Tunneling between sites for species a and b, self-interaction for
species a and b, and interaction between the two species.



Optical lattices of cold atoms III

Two species, two potentials

Atoms in the two basis states can be trapped by different
potentials

An atom can be delocalized by several lattices sites. MPQ,
Munich, 2003.



Optical lattices of cold atoms IV

They could realize an Ising spin chain Hamiltonian with this
technique. MPQ, Munich, 2003.



Photons

A photon can have a horizontal and a vertical polarization.

H/V can take the role of 0 and 1.

Problem: photons do not interact with each other.



Photons II

MPQ, Munich. Experiments with 6 photons.
[ W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and
H. Weinfurter, Phys. Rev. Lett. 2009. ]

|D(3)
6 〉=

1
√

20
(|111000〉+ |110100〉+ ... + |000111〉).



Photons III



Photons IV
6-qubit Quantum state tomography

[ C. Schwemmer, G. Tóth, A. Niggebaum, T. Moroder, D. Gross, O.
Gühne, and H. Weinfurter, Efficient Tomographic Analysis of a Six

Photon State, arxiv:1401.7526. ]
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Theory of quantum entanglement

Full tomography is not possible for large systems. What can we
still say about the state? We can still say entangled/not entangled.
Pure states

A pure product state is separable. All states that are not product
states are entangled.

Mixed states

A quantum state is called separable if it can be written as a convex
sum of product states as [Werner, 1989]

% =
∑

k

pk%
(k)
1 ⊗ %

(k)
2 ,

where pk form a probability distribution (pk > 0,
∑

k pk = 1), and %(k)n
are single-qudit density matrices.

A state that is not separable is called entangled.



Theory of quantum entanglement II

Entangled states are more useful than separable ones

in certain quantum information processing tasks.

in certain metrological tasks.

It is difficult to decide whether a quantum state is entangled or not.

For example, Bell inequalities can be used to detect entangled
states.



Theory of quantum entanglement III
A more accurate picture (Guhne, Toth, Phys. Rep. 2009):

6 O. Gühne, G. Tóth / Physics Reports 474 (2009) 1–75

Fig. 1. (a) Schematic picture of the set of all states as a convex set and the set of separable states as a convex subset. (b) Different schematic picture of
the same sets. Here, it is stressed that the extremal points of the separable states (the pure product states), are also extremal points of the set of all states,
hence they are located on the border of the total set.

The state is called separable, if there are convex weights pi and product states %Ai ⊗ %
B
i such that

% =
∑
i

pi%Ai ⊗ %
B
i (6)

holds. Otherwise the state is called entangled.

Physically, this definition discriminates between three scenarios. First, a product state is an uncorrelated state, where
Alice and Bob own each a separate state. For non-product states there are two different kinds of correlation. Separable
states are classically correlated. This means that for the production of a separable state only local operations and classical
communication (LOCC) are necessary. Alice and Bob can, by classical communication, share a random number generator
that produces the outcomes i with probabilities pi. For each of the outcomes, they can agree to produce the state %Ai ⊗ %

B
i

locally. By this procedure they produce the state % =
∑
i pi%

A
i ⊗ %

B
i . This procedure is not specific for quantum theory,

which justifies the notion of classical correlations. Otherwise, if a state is entangled, the correlations cannot originate from
the classical procedure described above. In this sense entangled states are a typical feature of quantum mechanics.
For our later discussion it is very important to note that the set of separable states is a convex set. This is clear from

the definition of separability, obviously a convex combination of two separable states is again separable. Furthermore, the
definition of separability implies that any separable state can be written as a convex combination of pure product states.
Thus, the set of separable states is the so called convex hull of the pure product states. Further, any separable state can be
written as a convex combination of maximally d2Ad

2
B pure product states. This follows from Carathéodory’s theorem, which

states that any element of a d-dimensional convex set can be written as a convex combination of d + 1 extremal points of
this set [45]. For the special case of two qubits, however, this bound can be improved and any separable state can be written
as a convex combination of four product states only [46,47]. The set of separable states is also shown in Fig. 1.2
Given the definition of entanglement and separability, it is very natural to ask whether a given density matrix is

separable or entangled. This is the so-called separability problem. There are several criteria known that imply separability or
entanglement of a state. However, up to now, no general solution for the separability problem is known.

2.3. Separability criteria

In this section, we will present some criteria for bipartite entanglement. As it is not our aim to discuss all of them in
detail, we focus our discussion on the most important ones.

2.3.1. The PPT criterion
Let us start with the criterion of the partial transposition. In order to formulate this, note that we can expand any density

matrix of a composite quantum system in a chosen product basis as

% =

N∑
i,j

M∑
k,l

%ij,kl|i〉〈j| ⊗ |k〉〈l|. (7)

Given this decomposition, one defines the partial transposition of % as the transposition with respect to one subsystem.
Thus, there are two partial transpositions: The partial transposition with respect to Alice is given by

%TA =

N∑
i,j

M∑
k,l

%ji,kl|i〉〈j| ⊗ |k〉〈l| (8)

2 A quantitative study on the shape of these sets in space where the coordinates are the density matrix elements is given in Ref. [48].
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True randomness
Pseudo-random numbers have unexpected correlations. Example
from Karl Entacher:

Solution: measure in the |0〉/|1〉 basis the state

1
√

2
(|0〉+ |1〉).

Commercially available random number generators based on this
idea.



No-cloning theorem
We are looking for a mechanism that clones quantum states

U |Ψ〉 ⊗ |0〉 = |Ψ〉 ⊗ |Ψ〉,

where U is a unitary dynamics.
Let us see why this is not possible. For the two basis states we have

U |0〉 ⊗ |0〉 = |0〉 ⊗ |0〉,

U |1〉 ⊗ |0〉 = |1〉 ⊗ |1〉.

Then, due to the linearity of quantum mechanics

U
(
|0〉+ |1〉
√

2

)
⊗ |0〉 =

1
√

2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉).

However, we would have needed

1
√

2
(|0〉+ |1〉) ⊗

1
√

2
(|0〉+ |1〉).

Thus, a quantum state cannot be cloned.



Coding in the 0/1 or on the (0+1)/(0-1) basis

Let us code a classical bit b ∈ 0,1 in a qubit. We can use the 0/1
basis as before:

|q〉 = (1 − b)|0〉+ b|1〉.

We can also use another basis, the 0 + 1/0 − 1 basis:

|q′〉 = (1 − b)
|0〉+ |1〉
√

2
+ b
|0〉 − |1〉
√

2
.

If we do not know the basis, we cannot recover the bit b.



Coding in the 0/1 or on the (0+1)/(0-1) basis II

Let us assume we used the 0/1 to code the bit

|q〉 = (1 − b)|0〉+ b|1〉.

Then, a single measurement of

M = 0 · |0〉〈0|+ 1 · |1〉〈1|

will give the bit exactly.

If the bit was encoded in the 0 + 1/0 − 1 basis, then we get with
50% probability 0, 50% probability 1, independently from b.



Coding in the 0/1 or on the (0+1)/(0-1) basis III

Note: if the quantum state could be copied, we could just copy the
state many times. From many copies, we could guess, which
basis was used.

Thus, it is very important that the quantum states cannot be
copied.



Quantum money

S. Wiesner 1970, a graduate student at Columbia University,
published in 1983.



Quantum cryptography (BB84)

Alice sends the secret message in qubits, randomly choosing the
bases: 0/1 or (0+1)/(0-1).

Bob receives the qubits and measures them in randomly chosen
bases.

Alice and Bob decides, using a public classical channel, for which
qubits they used the same bases.



Quantum cryptography (BB84) II

In 2004, the world’s first bank transfer using QKD was carried in
Vienna, Austria. (Zeilinger group, Vienna)

Transmit ballot results to the capital in the national election
occurring on 21 October 2007. (Gisin group, Geneva)

In 2013, Battelle Memorial Institute installed a QKD system built
by ID Quantique between their main campus in Columbus, Ohio
and their manufacturing facility in nearby Dublin.

(Wikipedia)



Quantum teleportation

A quantum state cannot be copied.

But, it can be transferred from one particle to another one such
that the state of the original particle is destroyed.
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Quantum Metrology

Let us take a GHZ state.

|GHZ〉 =
1
√

2
(|000..000〉+ |111..111〉) .

Let us employ the dynamics

U = e−iJzθ.

The dynamics is

|Ψ〉 =
1
√

2

(
|000..000〉+ |111..111〉e−iNθ

)
.

Basic task of metrology: we want to estimate θ based on
measuring the state after the evolution.



Quantum Metrology II
Let us measure

M = σ⊗N
x .

With this,
〈M〉 = cos(Nθ), (∆M)2 = sin2(Nθ).

Precision is

(∆θ)2|θ=0 =
|∂θ〈M〉|2

(∆M)2
=

1
N2

.

Tested for 3 qubits: Nature 2001. (NIST, Boulder, Colorado).

One can show that for separable states, for any measurements,

(∆θ)2|θ=0 ≥
1
N
.

[Pezzé, Smerzi, Phys. Rev. Lett. 2007]
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Computing in “parallel”

Quantum mechanics is linear

U |Ψ1〉 = |Φ1〉,

U |Ψ2〉 = |Φ2〉,

hence
U(|Ψ1〉+ |Ψ2〉) = |Φ1〉+ |Φ2〉.

Not so simple, since we cannot separate the results.



Factoring of primes: Shor’s algorithm

Usual encryption: difficult to find prime factors for a number.

Quantum computers can efficiently factor primes: Shor’s
algorithm, 1994.

To factor an integer N , the execution time is

O((logN)3) for a quantum computer,

O(e1.9(logN)1/3(log logN)2/3
) for the best classical algorithm.

Thus, for large N the quantum algorithm must be faster.



Search in a database: Grover’s algorithm

Quantum computers can search efficiently in a database: Grover’s
algorithm, 1996.

Task: find x for which
f (x) = 1,

where x is an N-bit non-negative integer.
(Assume that f (x) = −1 for all other cases.)

To factor an integer N , the execution time is

O(N
1
2 ) for a quantum computer,

N
2 classically.

Thus, again, for large N the quantum algorithm must be faster.



Quantum simulation

If quantum computing with thousands of qubits is not possible, we
can still be interested in specific problems.

Spin chains of 30-40 particles: already, we cannot simulate them
on a classical computer.



Conclusions

We discussed several aspects of quantum information and
quantum computation. For the transparencies, see

www.gtoth.eu

THANK YOU FOR YOUR ATTENTION!

http://www.gtoth.eu
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