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A single classical bit

A classical bit can be either 0 or 1. Can we still use it to describe a
real number between 0 and 1?

For that, we need an ensemble of several classical bits

{bk }
M
k=1, (1)

where bk = 0 or 1

We can interpret the average value and the variance. That is,

〈b〉 =
1
M

∑
k

bk , (2)

and
(∆b)2 =

1
M

∑
k

(bk − 〈b〉)2. (3)



A single classical bit II

This can also be given with probabilities:

Let P0 and P1 be the probabilities of having a 0 or a 1.

The expectation value and the variance are the function of P0 and
P1. Since P0 + P1 = 1, we have a single real degree of freedom
that describes the statistical properties of an ensemble of bits.

Hence,
〈b〉 = P1 (4)

and
(∆b)2 = P0(0 − P1)2 + P1(1 − P1)2. (5)



Stochastic computing

Stochastic computing uses random bits to calculate (John von
Neumann, 1953).

A random bit represents a real number between 0 and 1. Two
random bits can easily be multiplied.

〈b1b2〉 = 〈b1〉〈b2〉. (6)

We need many samples to get the average with small error.



Stochastic computing II

Lectures on

PROBABILISTIC LOGICS AND THE SYNTHESIS OF RELIABLE

ORGANISMS FROM UNRELIABLE COMPONENTS

delivered by

PROFESSOR J. von NEUMANN

The Institute for Advanced Study
Princeton, N. J.

at the

CALIFORNIA INSTITUTE OF TECHNOLOGY

January 4-15, 1952

Notes by

R. S. PIERCE



Stochastic computing III

The RASCEL stochastic computer, circa 1969, Wikipedia.



Stochastic computing IV

Multiplication is possible with an AND gate.

A. Alaghi, The Logic of Random Pulses: Stochastic Computing,
Ph.D. Thesis, University of Michigan, 2015.



Several classical bits

N classical bits can be in one of the 2N binary states. For
example, for N = 2, these are 00, 01, 10 and 11.

For N = 2, these are

P00,P01,P10,P11. (7)

The ensemble of the N-bit units can be described by the 2N

probabilities.

Since, again, the sum of all the probablities is 1, we need 2N − 1
real degrees of freedom to describe the statistical properties of
such an ensemble.



Several classical bits II

Let us consider some function of N bits f (k), where k is now an N
bit number.

Then, the expectation value of f is

〈f 〉 =
2N−1∑
k=0

pk f (k) = ~p~f , (8)

where k is an N-bit number, i.e., an integer between 0 and 2N − 1.
We put the f (k)’s into a vector ~f . We also put the pk probabilities
into ~p.



Several classical bits III

We can also write
〈f 2〉 =

∑
k

pk [f (k)]2 (9)

Hence,

(∆f )2 =
∑

k

pk [f (k)]2 −

∑
k

pk f (k)

2

. (10)

These were relevant, since in the quantum case, we will have
similar expressions.



Outline
1 General characteristics of multi-partite quantum systems

A. Classical bits
B. Quantum bit - pure states
C. Multi-qubit systems - pure states
D. Measurement
E. Mixed states and the density matrix
F. Geometry of quantum states

A single qubit
A single qudit (qunit):d-dimensional systems

G. Two or more qubits: reduced states
H. Bipartite systems: Schmidt decomposition
I. Purifications
J. Purity
K. Entropy

Shannon entropy, von Neumann entropy
Quantum conditional entropy, q. mutual information, q. relative entropy
Linear entropy

L. Fidelity
M. Distances 12 / 80



Quantum bit - pure states

A quantum bit (=two-state system, spin-1
2 particle) can be in a

pure state
|q〉 = α|0〉+ β|1〉, (11)

where α and β are complex numbers, and the normalisation
condition |α|2 + |β|2 = 1.

Note that the overall phase does not matter, thus a pure quantum
bit is described by two degrees of freedom.

The two complex coefficients have 4 real degrees of freedom.

However, due to the normalisation condition and the arbitrariness
of the overall phase we are left with two degrees of freedom.)
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Multi-qubit systems - pure states

What about a two-qubit system? What kind of states it can be in?
One could think on qubit 1 in state

|q1〉 = α1|0〉+ β1|1〉, (12)

and qubit 2 in state

|q2〉 = α2|0〉+ β2|1〉. (13)

However, we all know that the general state of the two-qubit
system can be given as

|q12〉 = α00|00〉+ α01|01〉+ α10|00〉+ α11|01〉. (14)



Multi-qubit systems - pure states II

In general, for N qubits we need N complex numbers. Again the
state has to be normalized and the overall phase does not matter,
thus this means 2 × 2N − 2 real degrees of freedom.

We can place the coefficients in a vector, called state vector and
write

|Ψ〉 =


α00
α01
α10
α11

 . (15)

The properties of the state vector are: it is normalized

〈Ψ|Ψ〉 = 1. (16)



Multi-qubit systems - pure states III

An overall phase does not matter:

e−iθ|Ψ〉 (17)

describes the same state for any θ.

The expectation value of an operator for a pure state can be
obtained as

〈A〉 = 〈Ψ|A|Ψ〉 = Tr(A|Ψ〉〈Ψ|). (18)
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Measurement

The von Neumann measuement in the z basis results is eithet 0 or
1. If the state was α|0〉+ β|1〉, then we get a statistical mixture of 0
and 1, with the probabilities

P0 = |α|2, (19)

and
P1 = |β|2. (20)

That is, from an ensemble of quantum bits we get an ensemble of
classical bits.

If we measure in the x basis, we get another classical ensemble.

For a multi-qubit system, if we measure in the some basis (e.g.,
x , y or z), we get an ensemble of N-bit systems. However, for
exach choice of basis we get a different classical ensemble.
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Mixed states and the density matrix

So far we were talking about pure states.

In reality, in an experiment we do not have a situation where a
machine always produces the |Ψ1〉 state.

Sometimes it makes mistakes, and produces the |Ψk 〉 states for
k = 2,3, ... How to describe such a situation?

|Ψ1〉 p1
|Ψ2〉 p2
|Ψ3〉 p3
... ...



Mixed states and the density matrix
What is the expectation value of an operator in such a system?
We can write it as

〈A〉 =
∑

k

pk 〈Ψk |A|Ψk 〉 = Tr

A ∑
k

pk |Ψk 〉〈Ψk |

 . (21)

This can be rewritten as

〈A〉 = Tr(%A), (22)

where
% =

∑
k

pk |Ψk 〉〈Ψk | (23)

is the density matrix (Neumann, Landau).

Note that if % is diagonal, we obtain

〈A〉 = Tr(%A) =
∑

k

%kkAkk . (24)

That is, A is written in the eigenbasis of %. This is the scalar
product of two vectors as in 〈f 〉 = ~p~f [given in Eq. (8)].



Mixed states and the density matrix II
The density matrix describes the state completely. Now we see,
why the overall phase does not matter:

e−iθ|Ψk 〉〈Ψk |e+iθ = |Ψk 〉〈Ψk |. (25)

The properties of the density matrix are

% = %†,

% ≥ 0,
Tr(%) = 1. (26)

A 2N × 2N density matrix has 4N − 1 real parameters.

For N = 1, this means 3 real parameters, corresponding to the
three coordinates of the Bloch vector. For r N = 2, this means 8
real parameters.



Mixed states and the density matrix III

We can also say that
Tr(%2) ≤ 1. (27)

It is one only for pure (rank-1) states.

The density matrix can be decomposed into the sum of pure
states in many ways. The decomposition

% =
∑

k

pk |Ψk 〉〈Ψk | (28)

is not unique, i.e., it is not necessarily an eigendecomposition.
This has a large importance for entanglement theory.



Mixed states and the density matrix IV

Summary:

N bits N qubits
Number of DOF 2N − 1 4N − 1
Description ~p %

Expectation value ~f~p Tr(A%)
Normalization

∑
k pk = 1 Tr(%) = 1
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Bloch vector

For a single qubit, the density matrix has three real
parameters. It can be written as

% =
1
2

1 +
∑

l=x ,y ,z

vlσl

 , (29)

where σl are the Pauli spin matrices.

Using Tr(σkσl) = 2δkl , we can write

Tr(%2) =
1
2

+
1
2

∑
l=x ,y ,z

v2
l . (30)

That is, the Bloch vector has a maximal length for pure states.



Bloch vector II

From Tr(%2) ≤ 1, the condition for being physical is Eq. (26), which
is equvalent to ∑

l=x ,y ,z

|vl |
2 ≤ 1. (31)

The three-element vector is called the Bloch vector.



Bloch vector III
Let us identify the points in (vx , vy , vz) corresponding to physical
states. They are in a ball.

The pure states are on the surface.

Mixed states are inside the Ball. This is because Tr(%2) is directly
related to the length of the Bloch vector.

The |0〉 and |1〉 correspond to the North and South Pole.

|0〉+ exp(−iφ)|1〉 correspond to points on the equator.

1-1

Set of physical quantum states for a single qubit. The axes
correspond to vl for l = x , y , z. Pure states correspond to points

on the surface, mixed states correspond to internal points.



A single qudit (qunit):d-dimensional systems

For higher dimensional systems the picture is much more
complicated. Let us consider qudits with dimension d .

Similarly to the case before, a d × d Hermitian matrix with a unit
trace has d2 − 1 degrees of freedom.

Hence, we can write a density matrix as a linear combination of
d2 − 1 SU(d) generators as

% =
1
d
1 +

1
2

d2−1∑
l=1

vlgl . (32)

Here,
Tr(gkgl) = 2δkl . (33)

(Like for the Pauli matrices. Thus, we have something like the
generalized Pauli matrices. d = 3 : Gell-Mann matrices.)



A single qudit (qunit):d-dimensional systems

For higher dimensional systems the picture is much more
complicated. Let us consider qudits with dimension d .

Similarly to the case before, a d × d Hermitian matrix with a unit
trace has d2 − 1 degrees of freedom. Hence, we can write a
density matrix as a linear combination of d2 − 1 SU(d) generators
as

% =
1
d
1 +

1
2

d2−1∑
l=1

vlgl . (34)

Here,
Tr(gkgl) = 2δkl . (35)

Like for the Pauli matrices. Thus, we have something like the
generalized Pauli matrices. d = 3 : for instance, Gell-Mann
matrices.



A single qudit (qunit):d-dimensional systems II

Gell-Mann matrices:

There are other possibilities: J. Lawrence, quant-ph/0403095.



A single qudit (qunit):d-dimensional systems III

Let us again look at the points (v1, v2, ..., vd2−1) corresponding to
physical states.

First note that the set of convex. This is because mixing two
physical states %1 and %2, we always get a physical state

% = p%1 + (1 − p)%2. (36)



A single qudit (qunit):d-dimensional systems IV

Two convex objects and one that is not convex.



A single qudit (qunit):d-dimensional systems V

On the next figure we will show the set of quantum states.

The cooridnate axis could be the vl , for example.

Inside the set there are the density matrices with full rank.

On the boundary there are the states with less than full rank, such
as for example rank-1 states, which are pure states.

A

B

C

D

E

Set of physical quantum states. Note that the set is convex.
A,B,D: rank-1 states. C: rank-2 state. E: full rank states.



A single qudit (qunit):d-dimensional systems VI

Observation. The following inequality is true

λmin(A + B) ≥ λmin(A) + λmin(B). (37)

Proof. Let us consider that for a Hermitian matrix X we have

λmin(X ) = min
ψ
〈ψ|X |ψ〉. (38)

Then, for A and B Hermitian matrices we have

λmin(A + B) = min
ψ
〈ψ|A + B|ψ〉 ≥ min

ψ
〈ψ|A|ψ〉+ min

ψ
〈ψ|B|ψ〉

= λmin(A) + λmin(B). (39)

�
We can prove similarly that

λmax(A + B) ≤ λmax(A) + λmax(B). (40)



Full rank states

Using this, we can say the following.

Observation. Full-rank states are inside the set.
Proof. If the state is full rank, it means that for some small ε

%′ = % + εH (41)

is also physical, where H is a trace 0 Hermitian matrix. Why is
that? See also the next figure.



Full rank states II

ρρ
ρ'

We take an internal state % and consider the states %′ in its
neighborhood.



Full rank states III

It is physical since
1 Trace is 1.
2 Hermitian.
3 Full rank means that

λmin(%) > 0, λmax(%) < 1. (42)

Eigenvalues are nonzero for small ε. This is because

λmax(%) + λmax(εH) ≥ λk (%′) ≥ λmin(%) + λmin(εH). (43)

Here we have

λmin(εH) =

+ελmin(H), if ε ≥ 0,
−|ε|λmax(H), if ε < 0.

(44)

Similar statement holds for λmax(εH). �



Non-full-rank states

Observation. Non-full-rank states are on the surface of the set.

Proof. If the state is not full rank, then it has zero eigenvalues.
Thus, there is an H such that %′ is aphisical for any ε > 0 or any
ε < 0.

To be more explicit, let us write

% = UDU†, (45)

such that D contains the eigenvalues. Here,

D = diag(λ1, λ2, λ3, ..., λd ), (46)

and the eigenvectors are

U = [|Ψ1〉, |Ψ2〉, |Ψ3〉, ..., |Ψd 〉]. (47)



Non-full-rank states II

Assume that λd = 0. Then,

%′ = % + ε(|Ψd 〉〈Ψd | − 1/d) (48)

has a negative eigenvalue for any ε < 0. The Identity is needed to
make the expression zero-trace.

This is because the eigenvalues of this matrix are

D′ = diag(λ1 − ε/d , λ2 − ε/d , λ3 − ε/d , ..., λd + ε(1 − 1/d)). (49)

�
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Two or more qubits: reduced states
How can one see the state of a qubit, if it is the part of an
entangled state?

A reduced state of a bipartite system can be obtained after tracing
out one of the subsystems. Let us consider a two-qubit system
and write the density matrix in the basis |00〉, |01〉, |10〉, |11〉. Then,
denote the elements of the density matrix by

%ij ,kl , (50)

where i , j , k , l = 0,1. In other words, it looks like

% =

|00〉 |01〉 |10〉 |11〉
|00〉
|01〉
|10〉
|11〉


%00,00 %00,01 %00,10 %00,11
%01,00 %01,01 %01,10 %01,11
%10,00 %10,01 %10,10 %10,11
%11,00 %11,01 %11,10 %11,11

 . (51)

Thus, the size of the density matrix is 4x4.



Two or more qubits: reduced states II

To become familiar with bras and kets, one can even use the
completeness relation

Identity =
∑

ij

|ij〉〈ij |. (52)

Then, one obtains

Identity × % × Identity =
∑
ijkl

|ij〉(〈ij |%|kl〉)〈kl |, (53)

where the expression in the bracket is just the matrix element of
the density matrix

%ij ,kl = 〈ij |%|kl〉. (54)

Hence, the density matrix can be written as

% =
∑
ijkl

%ij ,kl |ij〉〈kl |. (55)



Two or more qubits: reduced states III
Then, tracing out the second subsystem gives the reduced state

Tr2(%) = %red, (56)

which is given as
%red,ik =

∑
m
%im,km. (57)

This is a 2x2 density matrix of a qubit. With this, for any A

〈A ⊗ 1〉% = 〈A〉%red (58)

holds.

Graphical representation: in the blockdiagonal representation, we
sum the elements in the diagonal of the small matrices.

Tracing out for pure states:

Tr2

∑
k

αk |ψk 〉|φk 〉

 =
∑

k

|αk |
2|ψk 〉〈ψk |. (59)



Two or more qubits: reduced states IV

Strongly entangled

Strongly entangled

Entangled
Entangled

Entangled

Entangled

ϱ=

00 01 02 10 11 12 20 21 22

00

01

02

10

11

12

20

21

22

Partial trace in a 3 × 3 system according to the second subsystem.
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Bipartite systems: Schmidt decomposition

Any bipartite pure state can be given as

|ΨAB〉 =
∑

k

λk |k〉A|k〉B , (60)

where |k〉A are pairwise orthogonal with each other, and |k〉B are
also pairwise orthogonal with each other. λk are real and λk ≥ 0.

It cannot be generalized easily to multipartite systems. There is no
Schmidt decomposition for tripartite systems.

The reduced states are

%A =
∑

k

λ2
k |k〉〈k |A, %B =

∑
k

λ2
k |k〉〈k |B . (61)



Bipartite systems: Schmidt decomposition II

If λk are different from each other then the Schmidt decomposition
is unique. If some of the λk ’s are equal to each other then the
decomposition is not unique.

For example, let us assume that λ1 = λ2. Then,

λ1|1〉A|1〉B + λ2|2〉A|2〉B = λ1|+〉A|+〉B + λ2|−〉A|−〉B , (62)

where for both A and B we define

|±〉 =
1
√

2
(|1〉 ± |2〉). (63)
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Purifications

The pure state ΨAB state is the purification of the mixed state %A if

TrB(|ΨAB〉〈ΨAB |) = %A. (64)

Note that |ΨAB〉 on subsystems A and B, while %A lives on
subsystem A only.

Let us assume that a density matrix is defined as

%A =
∑

k

pk |φk 〉〈φk |A. (65)

Then, a purification can be a pure state

|Ψ〉AB =
∑

k

√
pk |φk 〉A ⊗ |k〉B , (66)

where |k〉B denotes an orthonormal basis of the subsystem B.



Purifications II

If |Ψ〉AB is a purification then

|Ψ〉′AB = 1A ⊗ UB |Ψ〉AB , (67)

is also a purification.



Purifications III

Purification of the eigendecomposition,

%A =
∑

k

λk |φk 〉〈φk |A. (68)

Then,
|Ψ〉AB =

∑
k

√
λk |φk 〉A ⊗ |k〉B . (69)

If %A is full rank then the size of B is the same of the size of A.

In general, B can also have a larger dimension that A.

For instance,
|Ψ〉AB =

∑
k

√
λk |φk 〉A ⊗ |φk 〉B . (70)

is also a purification.
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Purity

Defined as
Tr(%2). (71)

1 for pure states.

1/d for the completely mixed state.
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Shannon entropy

There is a source that outputs an integer number between 1 and
d .

The Shannon entropy is given as

H = −
d∑

k=1

pk log pk . (72)



Shannon entropy II

Properties
Classical, not quantum.

The source can have d possible outputs with some probability.

In information theory, the entropy of a random variable is the
average level of "information", "surprise", or "uncertainty" inherent
in the variable’s possible outcomes (Wikipedia).

There is a clear relation to compression of data. If the entropy is
lower, one can compress the data to a smaller space.



Shannon entropy III

Further properties

H = 0 if p1 = 1, all other pk = 0. ~p = (1,0,0,0, ...). The output is
always the same. No information is provided.

Comment: we can show that, using L’Hospitals rule,

lim
x→0

(x log x) = lim
x→0

log x
1/x

= lim
x→0

1/x
−1/x2

= − lim
x→0

x = 0. (73)

H = log d (maximal) if pk = 1
d . ~p = ( 1

d ,
1
d ,

1
d ,

1
d , ...). All outputs are

equally probable, a lot of information is provided.



Von Neumann entropy

Von Neumann entropy for a quantum state is defined as

S(%) = −Tr(% log %) ≡ −〈log %〉. (74)

Note: matrix logarithm! It can be written with the eigenvalues of
the density matrix as

S(%) = −
d∑

k=1

λk log λk . (75)



Von Neumann entropy II

Properties

Quantum. "Quantum version" of the Shannon entropy.

For a pure state we have λk = {1,0,0, ...,0}, and thus it is zero.

Its maximal is for the completely mixed state for which
λk = { 1d ,

1
d ,

1
d , ...,

1
d }, and its value is log2 d .

Invariant under change of basis:

S(%) = S(U%U†). (76)

Concave, i.e.,

S(p%1 + (1 − p)%2) ≥ pS(%1) + (1 − p)S(%2). (77)



Von Neumann entropy III

Concavity (continued)

Let us prove the concavity. We need Klein’s inequality. f is a convex
function. Then,

Tr[f (A) − f (B)] ≥ Tr[(A − B)f ′(B)]. (78)

Special case, f (t) = t ln t . Then, f ′(t) = 1 + ln t . Hence,

Tr[A ln A − B ln B] ≥ Tr[(A − B) ln B] + Tr(A − B). (79)

Hence,
Tr[A ln A − A ln B] ≥ Tr(A − B) (80)

with equality if and only if A = B.



Von Neumann entropy III

Concavity (continued)

Let us take A = %1 and %2 and B = %. Then, we have

Tr(%1 ln %1 − %1 ln %) ≥ Tr(%1 − %) = 0, (81)

and
Tr(%2 ln %2 − %2 ln %) ≥ Tr(%2 − %) = 0. (82)

Then, we can write that

Tr(% ln %) = pTr(%1 ln %) + (1 − p)Tr(%2 ln %)

≤ pTr(%1 ln %1) + (1 − p)Tr(%2 ln %2). (83)

We used the book "Geometry of quantum states." �



Von Neumann entropy IV
Further property

Additive for independent systems.

S(%1 ⊗ %2) = S(%1) + S(%2). (84)

Let us prove it. First we need that This can be shown as follows

log(%1 ⊗ %2) = log

∑
k

λk |Ψk 〉〈Ψk | ⊗
∑

l

σl |Φl 〉〈Φl |


=

∑
k

∑
l

log(λkσl )|Ψk 〉〈Ψk | ⊗ |Φl 〉〈Φl |

=
∑

k

∑
l

[log(λk ) + log(σl )]|Ψk 〉〈Ψk | ⊗ |Φl 〉〈Φl |

=
∑

k

log(λk )|Ψk 〉〈Ψk | ⊗
∑

l

|Φl 〉〈Φl |

+
∑

k

|Ψk 〉〈Ψk | ⊗
∑

l

log(σl )|Φl 〉〈Φl |

= log(%1) ⊗ 1 + 1 ⊗ log(%2). (85)



Von Neumann entropy V

Additive for independent systems (continued)

Thus, we have just derived that

log(%1 ⊗ %2) = log(%1) ⊗ 1 + 1 ⊗ log(%2). (86)

Hence,

S(%1 ⊗ %2) = −Tr[%1 ⊗ %2 log(%1 ⊗ %2)]

= −Tr{%1 ⊗ %2[log(%1) ⊗ 1 + 1 ⊗ log(%2)]}

= Tr(%2)S(%1) + Tr(%1)S(%2)

= S(%1) + S(%2). (87)

�



Von Neumann entropy VI
Properties (continued)

Subadditive,

S(%12) ≤ S(%1) + S(%2) ≡ S(%1 ⊗ %2). (88)

Proof with Klein’s inequality. [See "Geometry of quantum states"]

A = %12 and B = %1 ⊗ %2 and we use again

Tr(A ln A − A ln B) ≥ Tr(A − B). (89)

Hence,

Tr[%12 ln %12 − %12 ln(%1 ⊗ %2)] ≥ Tr(%12 − %1 ⊗ %2) = 0. (90)

Hence,

Tr(%12 ln %12) ≥ Tr[%12 ln(%1 ⊗ %2)]

= Tr{%12[ln(%1 ⊗ 1) + ln(1 ⊗ %2)]}

= Tr[%1 ln(%1)] + Tr[%2 ln(%2)]. (91)

�



Von Neumann entropy VII

Properties (continued)

Araki-Lieb inequality

|S(%1) − S(%2)| ≤ S(%12). (92)

Strongly subadditive,

S(%123) + S(%2) ≤ S(%12) + S(%23). (93)

The matrices %1, %12, etc. reduced states.

Often used in condensed matter physics and field theory. See block
entropy depending on the block size.



Von Neumann entropy VIII

Figure from G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement
in quantum critical phenomena, Phys. Rev. Lett. 90, 227902 (2003).

https://doi.org/10.1103/PhysRevLett.90.227902


Quantum conditional entropy

Quantum conditional entropy ist is a generalization of the
conditional entropy of classical information theory.

S(A|B) = S(%AB) − S(%B). (94)

It can be negative, unlike in the classical case.

If it is negative then the quantum state is entangled. Proof: for
product states, we have

S(A|B) = S(%A ⊗%B)−S(%B) = S(%A) + S(%B)−S(%B) = S(%B) ≥ 0.
(95)

For a mixture of product states (=separable states), we also have
S(A|B) ≥ 0 since S(A|B) is concave in the state. If it is negative,
then the state is not separable. In other words, the state is
entangled.



Quantum mutual information

Quantum mutual information is a measure of correlation between
subsystems of a quantum state:

I(A : B) = S(%A) + S(%B) − S(%AB) = S(%AB ||%A ⊗ %B). (96)

For product states, it is zero. It its non-negative due to the
subadditivity of the entropy.



Quantum relative entropy

The relative entropy is given as

S(%||σ) = −Tr[%(logσ − log %)] = −Tr(% logσ) − S. (97)

Properties

S(%||σ) ≥ 0.

S(%||σ) = 0 if and only if % = σ.

Not symmetric S(%||σ) , S(σ||%).

Sort of a distance between two quantum states.

Invariant under simultaneous change of basis:
S(%||σ) = S(U%U†||UσU†).

S(%1 ⊗ %2||σ1 ⊗ σ2) = S(%1||σ1) + S(%2||σ2).



Quantum relative entropy II

Further properties

For the relative entropy to the completely mixed state

%completely mixed = 1/d (98)

we have
S(%||%completely mixed) = log(d) − S(%). (99)

Monotonicity under CP maps (completely positive maps = physical
maps). % and σ evolves under the same CP map. S(%||σ) cannot
increase.



Linear entropy
The linear entropy is defined as

Slin(%) = 1 − Tr(%2) ≡ 〈1 − %〉. (100)

It is often easier to obtain than the von Neumann entropy.

Its relation to von Neumann entropy via the Mercator series is

−〈log %〉 = 〈1 − %〉+ 〈(1 − %)2〉/2 + 〈(1 − %)3〉/3 + ... (101)

This is based on expanding

log(1 − (1 − %)) (102)

using the Mercator series

log(1 + x) = x − x2/2 + x3/3 −+... (103)

Note that
1 − % ≥ 0. (104)

Hence,
S ≥ Slin. (105)
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Fidelity
How to measure the distance between quantum states?

Pure states: overlap square, 〈ψ|φ〉2.
〈ψ|φ〉 = 0 if and only if |ψ〉 = |φ〉.

A pure state and a mixed state:

Tr(|Ψ〉〈Ψ|σ) = 〈Ψ|σ|Ψ〉. (106)

Two mixed states: more difficult

F (%, σ) =
(
Tr(

√
√
%σ
√
%)

)2
. (107)

0 ≤ F (%, σ) ≤ 1.
F (%, σ) = 1 if and only if % = σ.
F (%, σ) = 0 if % and σ live on orthogonal subspaces.
Symmetric F (%, σ) = F (σ, %).
Let us check consistency. If ρ = |Ψ〉〈Ψ| then

√
% = % = |Ψ〉〈Ψ|. Then,

F (%, σ) = Tr(
√
|Ψ〉〈Ψ|σ|Ψ〉〈Ψ|)2 = 〈Ψ|σ|Ψ〉Tr(

√
|Ψ〉〈Ψ|)2 = 〈Ψ|σ|Ψ〉.

(108)
Hence, we got back the formula for the simpler case.



Fidelity II

Defining the Fidelity with a maximum over purifications

F (%, σ) = max
|Ψσ〉
|〈Ψ%|Ψσ〉|

2. (109)

|Ψ%〉 is a purification of %, |Ψσ〉 is a purification of σ,
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Distances I

The Bures distance is defined as We have

DB(%, σ)2 = 2
[
1 −

√
F (%, σ)

]
, (110)

where F is the fidelity.

Schatten norm

||A||p = Tr(|A|p)
1
p . (111)

where
||A||1 ≥ ||A||2. (112)



Distances II

The Hilbert-Schmidt norm is defined as

||A||HS = ||A||2 =
∑
mn
|Amn|

2. (113)

For a Hermitian A, we have

||A||HS =

√∑
n
|λn|2. (114)

Then, the Hilbert-Schmidt distance is

DHS(%, σ)2 = ||% − σ||2HS = Tr[(% − σ)2]. (115)



Distances III

The trace norm is defined as

||A||tr = ||A||1 = Tr(
√

A†A) = Tr(|A|) =
∑

n
|λn|. (116)

For a Hermitian A, we have

||A||tr =
∑

n
|λn|. (117)

Then, the trace distance is

Dtr(%, σ) =
1
2
||% − σ||tr =

1
2

tr[|% − σ|]. (118)

Hence,
0 ≤ Dtr(%, σ) ≤ 1. (119)
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