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Quantum entanglement has been in the center of attention for quantum physicist for more than half a century. Bell
inequalities [1–3] provide a very insightful approach for detecting an important characteristic arising from entangle-
ment: non-locality. If a Bell inequality is violated for an experiment, then it means that the measurement results
cannot be explained with a local hidden variable theory.

Bell inequalities have two uses: (i) they demonstrate that quantum mechanics as a theory is nonlocal. (ii) They
prove that the quantum state created in the experiment is entangled. Every state violating a Bell inequality for some
choice of observables is entangled. However, not all entangled states violate a Bell inequality [4]. Thus there are
entangled states which allow for a local hidden variable model.

In the recent years powerful tools for detecting quantum entanglement were developed: entanglement witnesses [5].
These, in principle, make possible detecting any entangled states. Unlike Bell inequalities (which are classical), they
use quantum mechanics for obtaining conditions for entanglement. This is the reason why in many situations much
fewer measurements are sufficient for entanglement detection than with Bell inequalities.

Let us provide a simple example. The well-known CHSH inequality detects entangled states close to the state
Ψ = (|00〉 + |11〉)/√2. It requires measuring the spin components x and y for both qubits. The CHSH inequality
claims that for states with local hidden variable model

〈x1x2〉+ 〈y1y2〉+ 〈x1y2〉 − 〈y1x2〉 ≤ 2, (1)

where 〈...〉 denotes expectation value. The maximum for local hidden variable models can be obtained by trying all
the 16 possible combinations of x1, y1, x2, y2 = ±1. The quantum maximum of Eq. (1) is 2

√
2. Thus in an experiment

the visibility must be at least 2/(2
√

2) ≈ 70%
How can one see that Bell inequalities do not use quantum mechanics? For example, they consider 〈xk〉 = 〈yk〉 = +1

a possible measurement outcome. But from quantum mechanics we know that 〈xk〉2+〈yk〉2 ≤ 1. That is, the maximal
length of a Bloch vector is one. If we use this knowledge then a much simpler condition can be obtained. So for
separable (not entangled) states

〈x1x2〉+ 〈y1y2〉 ≤ 1. (2)

This can be proved using that for product sates 〈x1x2〉 + 〈y1y2〉 = 〈x1〉〈x2〉 + 〈y1〉〈y2〉. The condition given in Eq.
(2) is basically an entanglement witness. If it is violated then the state is entangled. Here the quantum maximum is
2. Thus the robustness of this condition is larger: it requires only 50% visibility in an experiment. Other advantage:
only two measurement settings are needed instead of four.

In the multi-qubit case the situation is the following [3]. Let us consider GHZ states for simplicity [6]. The Mermin
inequality [2] can be used for entanglement detection around GHZ states. It also requires detecting x and y for each
qubit. The condition for local hidden variable models for n qubits is given as

〈x1x2x3x4 · · · xN−1xN 〉
− 〈y1y2x3x4 · · · xN−1xN 〉
+ 〈y1y2y3y4 · · · xN−1xN 〉
− ...

+ 〈y1y2y3y4 · · · yN−1yN 〉
≤ 2bn/2c, (3)

where bxc denotes integer part. Here each term represents the sum of all its possible permutations. Very many
measurements ... What actually matters, is not the number of terms, but the number of measurement settings. Here
each term needs a separate setting. That is, there are no two terms which could be measured with the same setting.

After the long introduction we reached the main point. It is possible to design much more efficient conditions for
entanglement using entanglement witnesses. These detect multi-qubit entanglement with much much fewer settings.
In fact, they need only two settings. This is a surprise. It is possible since the states most often considered in quantum
information (GHZ states, cluster states) are so-called stabilizer states. Thus stabilizer theory, already very much used



2

in quantum error correction, can also be used for detecting entanglement. For details please see Ref. [7].
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