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The concept of randomized measurements on individual particles has proven to be useful for analyzing
quantum systems and is central for methods like shadow tomography of quantum states. We introduce
collective randomized measurements as a tool in quantum information processing. Our idea is to perform
measurements of collective angular momentum on a quantum system and actively rotate the directions
using simultaneous multilateral unitaries. Based on the moments of the resulting probability distribution,
we propose systematic approaches to characterize quantum entanglement in a collective-reference-frame-
independent manner. First, we show that existing spin-squeezing inequalities can be accessible in
this scenario. Next, we present an entanglement criterion based on three-body correlations, going beyond
spin-squeezing inequalities with two-body correlations. Finally, we apply our method to characterize
entanglement between spatially separated two ensembles.
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Introduction—Rapid advances in quantum technology
have made it possible to manipulate and control increas-
ingly complex quantum systems. However, as the number
of particles increases, the dimension of the Hilbert space
grows exponentially, making it difficult to analyze quantum
states fully. One way to address this issue is to rotate
measurement directions with random unitaries and consider
the moments of the resulting probability distribution. This
method can provide essential quantum information about
the system and give several advantages in characterizing
quantum systems [1,2].
First, it allows us to obtain knowledge of the quantum

state, reducing the experimental effort compared with the
standard way of quantum state tomography. Second, it is
useful when some prior information about the state is not
available, such as when an experiment is intended to create
a particular quantum state. Third, and most importantly, it
does not need careful calibration and alignment of meas-
urement directions or the sharing of a common frame of
reference between the parties.
Several proposals have been put forward in the field of

randomized measurements to detect bipartite [3–10] and

multipartite entanglement [11–16]. Another research line
of randomized measurements has estimated several useful
functions of quantum states such as state’s purity [17],
Rényi entropies [3,4,18], state’s fidelities [19], scrambling
[20], many-body topological invariants [21,22], the
von Neumann entropy [23], quantum Fisher information
[24–26], and the moments of the partially transposed
quantum state [27–32]. Also, in the framework of shadow
tomography, the techniques of randomized measurements
are used to predict future measurements via estimators in
data collections [33–38].
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FIG. 1. Sketch of the collective Bloch spherewith the coordinates
ðhJxi; hJyi; hJziÞ. Many-body spin singlet states are represented by
a dot at the center (red), which does not change under any
multilateral unitary transformations U⊗N (green arrows). Spin
measurement in the z direction is rotated randomly (blue arrow).
This Letter proposes systematic methods to characterize spin-
squeezing entanglement in an ensemble of particles by rotating a
collective measurement direction randomly over this sphere.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 133, 060203 (2024)

0031-9007=24=133(6)=060203(8) 060203-1 Published by the American Physical Society

https://orcid.org/0000-0003-0083-7743
https://orcid.org/0000-0002-9602-751X
https://orcid.org/0000-0002-6033-0867
https://ror.org/02azyry73
https://ror.org/04mmhnh95
https://ror.org/02dp3a879
https://ror.org/04x48z588
https://ror.org/000xsnr85
https://ror.org/000xsnr85
https://ror.org/02e24yw40
https://ror.org/01cc3fy72
https://ror.org/02ks8qq67
https://ror.org/035dsb084
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.133.060203&domain=pdf&date_stamp=2024-08-08
https://doi.org/10.1103/PhysRevLett.133.060203
https://doi.org/10.1103/PhysRevLett.133.060203
https://doi.org/10.1103/PhysRevLett.133.060203
https://doi.org/10.1103/PhysRevLett.133.060203
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Although many tools in randomized measurements were
already presented, still the current findings are not fully
comprehensive in several respects. One limitation of the
results presented so far is the assumption that local
subsystems can be controlled individually. However, this
may not be available in an ensemble of quantum particles
such as cold atoms [39], or trapped ions [40], or Bose-
Einstein condensates with spin squeezing [41–43]. Such
quantum systems can be characterized by measuring global
quantities such as collective angular momenta [44–48].
Another practical challenge is that powerful entangle-

ment detection requires many operational resources. For
instance, Refs. [6,7] suggested that at least fourth-order
moments of randomized measurements are needed to
characterize a very weak form of entanglement, known
as bound entanglement [49]. In fact, their practical imple-
mentation may require a significant amount of randomized
measurement due to the limited availability of unitary
designs [2,5,50,51].
In this Letter, we generalize the concept of randomized

measurements on individual particles to the notion of
collective randomized measurements. The main idea is
to perform collective random rotations on a multiparticle
quantum system before a fixed measurement and consider
the moments of the resulting distribution of results with
respect to the randomly chosen rotations. We will apply this
idea to different scenarios and present several entanglement
criteria in a collective-reference-frame-independent (CRFI)
manner. Note that a similar idea of collective randomization
has recently been used in the context of classical shadow
tomography [52] to classify trivial and topologically
ordered phases in many-body quantum systems.
We first show that spin-squeezing entanglement in

permutationally symmetric N-particle systems can be
characterized completely. Second, even in nonsymmetric
cases, we demonstrate that the second-order moment can
detect multiparticle bound entanglement. Third, we further
introduce a criterion to certify multiparticle bound entan-
glement with antisymmetric correlations via third-order
moments. Finally, we generalize the method to verify
entanglement between spatially separated two quantum
ensembles.
Collective randomized measurements—Consider a

quantum ensemble that consists of N spin-1
2
particles in

a state ϱ∈H⊗N
2 . Suppose that each particle in this ensemble

cannot be controlled individually, and one can instead
measure the collective angular momentum

Jl ¼
1

2

XN
i¼1

σðiÞl ; ð1Þ

with Pauli spin matrices σðiÞl for l ¼ x, y, z acting on ith
subsystem.
Let us perform measurements with Jz and rotate the

collective direction in an arbitrary manner. We introduce

an expectation value and its variance according to a
random unitary,

hJziU ¼ tr½ϱU⊗NJzðU†Þ⊗N �; ð2aÞ

ðΔJzÞ2U ¼ hJ2ziU − hJzi2U: ð2bÞ

These depend on the choice of collective simultaneous
multilateral unitary operations U⊗N . Now we define a
linear combination as

fUðϱÞ ¼ αðΔJzÞ2U þ βhJzi2U þ γ; ð3Þ

where α, β, γ are real constant parameters. The function
fUðϱÞ can be determined experimentally by observing
hJziU and ðΔJzÞ2U as each parameter can be adjusted in
the postprocessing.
The key idea to detect entanglement in ϱ is to take a

sample over collective local unitaries and consider the
rth moments of the resulting distribution,

J ðrÞðϱÞ ¼
Z

dU½fUðϱÞ�r; ð4Þ

where the integral is taken according to the Haar measure.
This collective unitary transformation can be written as
U⊗N ¼ eiu·J, where u ¼ ðux; uy; uzÞ is a three-dimensional
unit vector and J ¼ ðJx; Jy; JzÞ is a vector of collective
angular momenta. The randomization of Haar collective
unitaries corresponds to the uniform randomization
over the three-dimensional sphere in the coordinates
ðhJxi; hJyi; hJziÞ. This sphere is known as the collective
Bloch sphere [46,47,53] in an analogy of the standard
Bloch sphere in a single-qubit system, illustrated in Fig. 1.
It is essential that, by definition, the moments are

invariant under any collective local unitary transformation,

J ðrÞ½V⊗NϱðV†Þ⊗N � ¼ J ðrÞðϱÞ; ð5Þ

for a collective local unitary V⊗N for 2 × 2 unitaries V. In
the following, we will discuss CRFI entanglement detec-
tion based on the moments J ðrÞ.
Permutationally symmetric states—To proceed, let us

recall that an N-qubit state ϱ is called permutationally
symmetric (bosonic) if it satisfies Pabϱ ¼ ϱPab ¼ ϱ, for all
a; b∈ f1; 2;…; Ng with a ≠ b. Here, Pab is an orthogonal
projector onto the so-called symmetric subspace that
remains invariant under all the permutations. Note that
Pab can be written as Pab ¼ ð1þ SabÞ=2 with the SWAP
(flip) operator Sab ¼

P
i;j jijihjij that can exchange qubits

a, b: Sabjψai ⊗ jψbi ¼ jψbi ⊗ jψai. We stress that the
notion of permutational symmetry is stronger than permuta-
tional invariance, defined by PabϱPab ¼ ϱ [54].
There are many studies on the entanglement of permuta-

tionally symmetric states [54–60]. In general, a state ϱ is
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said to contain multipartite entanglement if it cannot be
written as the fully separable state

ϱfs ¼
X
k

pk

���að1Þk ; að2Þk � � � aðNÞ
k ihað1Þk ; að2Þk � � � aðNÞ

k

���; ð6Þ

where the pk form a probability distribution. Importantly,
for any N-particle permutationally symmetric state the pure
states in a decomposition like Eq. (6) need to be symmetric,
too; so a symmetric state is either fully separable or
genuinely multipartite entangled (GME) [55,59], where
GME states cannot be written in any separable form for
all bipartitions. One sufficient way to prove GME for a
symmetric state is thus to detect entanglement in a two-
particle reduced state ϱab ¼ trða;bÞcðϱÞ for only one pair
ða; bÞ with the complement ða; bÞc. This can be achieved
by accessing only the two-body correlations as minimal
information.
The notion of spin squeezing originally relies on certain

spin-squeezing parameters [61], but in several previous
works [44,45,62–64], a state ϱ is called spin-squeezed if its
entanglement can be detected from the values of hJli
and hJ2l i only for any three orthogonal directions, e.g.,
l ¼ x, y, z. For a symmetric state, its spin-squeezing
entanglement has been completely characterized in a
necessary and sufficient manner by proving the entangle-
ment in the two-particle reduced states [44,45,62–64].
On the other hand, such a characterization requires opti-
mizations over collective measurement directions for a
given quantum state.
In the following, we will show that the collective

randomized measurement scheme can reach the same
conclusion without such an optimization. We can formulate
the first main result of this Letter:
Observation 1.—For an N-qubit permutationally sym-

metric state ϱ, the first, second, and third moments J ðrÞðϱÞ
for r ¼ 1, 2, 3 completely characterize spin-squeezing
entanglement. That is, a constructive procedure for achieving
the necessary and sufficient condition is obtained by the
moments with the parameters α ¼ 2=N2, β ¼ −2ðN − 2Þ=
ðNN2Þ, γ ¼ −1=½2ðN − 1Þ� and N2 ¼ NðN − 1Þ.
The proof of this observation is given in Appendix A in

the Supplemental Material [65]. As the proof’s main
idea, we will first explain the known fact that a necessary
and sufficient condition is equivalent to the violation of
C ≥ 0 for the covariance matrix Cij ¼ hσi ⊗ σjiϱab −
hσiiϱahσjiϱb , with the reduced state ϱab for any choice a,
b, for details; see Refs. [54,81,82]. Then we will analyti-
cally show that the violation can be determined from the
moments J ðrÞðϱÞ for r ¼ 1, 2, 3, and we will provide an
explicit procedure to decide spin-squeezing entanglement.
We remark that any N-qubit permutationally symmetric

state can be given by a density matrix in the so-called Dicke
basis. For m excitations, the Dicke state is defined as
jDN;mi ¼ ðNmÞ−1=2

P
k πkðj1i⊗m ⊗ j0i⊗ðN−mÞÞ, where the

summation is over the different permutations of the qubits
and m is an integer such that 0 ≤ m ≤ N. A concrete
example is the state jD3;1i ¼ ðj001i þ j010i þ j100iÞ= ffiffiffi

3
p

.
Then states mixed from Dicke, W, and GHZ (Greenberger–
Horne–Zeilinger) states are permutationally symmetric.
Accordingly, Observation 1 allows us to detect such
spin-squeezed GME states in a CRFI manner.
Multiparticle bound entanglement—Next, let us consider

the more general case where ϱ is not permutationally
symmetric. Even in this case, our approach with collective
randomized measurements is effective for detecting spin-
squeezing entanglement. We can present the second result
in this Letter:
Observation 2.—For anN-qubit state ϱ, the first moment

J ð1Þ with ðα; β; γÞ ¼ ð3; 0; 0Þ is given by

J ð1ÞðϱÞ ¼
X
l¼x;y;z

ðΔJlÞ2: ð7Þ

Any N-qubit fully separable state obeys

J ð1ÞðϱÞ ≥ N
2
: ð8Þ

Then violation implies the presence of multipartite
entanglement.
The proof of this observation is given in Appendix B of

the Supplemental Material. The criterion in Eq. (8) itself
was already established [83], so we only have to show the
derivation of Eq. (7). While the proof employs Weingarten
calculus [84] to evaluate the Haar integrals, we note that the
relation in Eq. (7) can be understood in the context of
quantum designs. These allow to replace unitary integrals
of certain polynomials by finite sums. In the present case,
one would require spherical two designs [2,5,85].
The criterion in Eq. (8) can be maximally violated

by the so-called many-body spin singlet states ϱsinglet
[44,45,83,86–90]. A pure singlet state is defined as a
state invariant under any collective unitary:U⊗N jΨsingleti ¼
eiθjΨsingleti. That is, it is simultaneous eigenstates of Jl
for l ¼ x, y, z with zero eigenvalue. Many-body spin
singlet states ϱsinglet are mixtures of pure singlet states
and are also invariant under any collective local unitary:
U⊗NϱsingletðU†Þ⊗N ¼ ϱsinglet. Since the state ϱsinglet has
hJkl i ¼ 0 for and any integer k, it is at the center of the
collective Bloch sphere (see Fig. 1).
Moreover, the criterion of Eq. (8) is known to be a very

strong entanglement condition. In fact, it can detect the
so-called multiparticle bound entanglement [44,45], which
can be positive under partial transposition (PPT) for all
bipartitions [91,92]. We stress that Observation 2 only
requires second moments over Haar unitary integrals. This
shows that collective randomized measurements are funda-
mentally different from previous randomized measure-
ments [6,7].
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In addition, we mention that Observation 2 can be used in
probing many-body Bell nonlocality [93,94] and improving
quantum metrology [95–97]. Also, we will discuss its
high-dimensional generalizations in Appendix B of the
Supplemental Material. Finally, we remark that the criterion
in Eq. (8) is known as one of the optimal inequalities to
detect spin-squeezing entanglement [44,45].
Antisymmetric entanglement—So far, we have consid-

ered the moments J ðrÞðϱÞ based on the function fUðϱÞ in
Eq. (3). Since fUðϱÞ contained two-body quantum corre-
lations via hJ2ziU and is related to the collective angular
momenta as symmetric observables, we detected entangle-
ment with large two-body correlations and certain sym-
metries, such as Dicke and singlet states. In the following,
we will develop collective randomized measurements to
analyze quantum systems in terms of nonsymmetric
observables with three-body correlations.
To proceed, let us begin by considering the three-qubit

observable Sðσx ⊗ σy ⊗ σzÞ≡ σx ⊗ σy ⊗ σz þ σy ⊗ σz ⊗
σx þ σz ⊗ σx ⊗ σy þ � � �, where S denotes the average
over all permutations of indices x, y, z. This observable
is invariant under any particle exchange:
SabSðσx ⊗ σy ⊗ σzÞSab ¼ Sðσx ⊗ σy ⊗ σzÞ, with Sab

being the SWAP operator for any a; b. The N-qubit
extension of this observable can be represented by the
product of collective angular momenta

OS ≡ X
i<j<k

S
�
σðiÞx ⊗ σðjÞy ⊗ σðkÞz

�
¼ 8

3!
SðJxJyJzÞ; ð9Þ

where SðJxJyJzÞ ¼ JxJyJz þ JyJzJx þ JzJxJy þ � � � and
SabOSSab ¼ OS. In general, any combination of products
of collective angular momenta remains permutationally
invariant under particle exchange [98].
An associated operator with OS from Eq. (9) is the

antisymmetric observable

OA ≡ X
i<j<k

A
�
σðiÞx ⊗ σðjÞy ⊗ σðkÞz

�
; ð10Þ

whereAðσx ⊗ σy ⊗ σzÞ denotes the antisymmetrization of
σx ⊗ σy ⊗ σz by taking the sum over even permutations
and subtracting the sum over odd permutations of indices x,
y, z. Clearly, OA cannot be constructed from collective
angular momenta.
We have seen that symmetric observables based on

collective angular momenta can detect symmetric entan-
glement with collective randomized measurements. Then,
one may wonder if antisymmetric observables such as OA
can characterize antisymmetric entanglement. Similarly to
Eq. (4), we define the average over random collective local
unitaries as follows:

T ðϱÞ ¼
Z

dUtr½ϱU⊗NOAðU†Þ⊗N �: ð11Þ

For this we can formulate the third result in this Letter:

Observation 3.—The average T ðϱÞ is given by

T ðϱÞ¼ tr½ϱOA�¼
X
i<j<k

X
a;b;c

εabc
D
σðiÞa ⊗σðjÞb ⊗σðkÞc

E
ϱ
; ð12Þ

where εabc denotes the Levi-Civita symbol for a; b; c ¼ x,
y, z. Any N-qubit fully separable state can obey a certain
tight bound,

jT ðϱÞj ≤ pðNÞ
fs ; ð13Þ

where pðNÞ
fs can be computed analytically for N ¼ 3 and

numerically for up to N ≤ 7 and is, up to numerical

precision, given by pðNÞ
fs ¼ N2 cot ðπ=NÞ=3 ffiffiffi

3
p

. Then vio-
lation implies the presence of multipartite entanglement.
The derivation of Eq. (12) and the explanation of

Eq. (13) are given in Appendix C of the Supplemental
Material. Also, we will analytically show that any three-
qubit biseparable state obeys jT ðϱÞj ≤ 2; see Appendix C,
where this violation signals GME states.
Let us test our criterion with the two-parameter family

of states

ϱx;y ¼ xjζNihζN j þ yjζ̃Nihζ̃N j þ
1 − x − y

2N
1⊗N
2 ; ð14Þ

where 0 ≤ x; y ≤ 1. Here, jζNi is the so-called phased
Dicke state [99–105], up to normalization,

jζNi ¼
XN
k¼1

e
2πik
Nffiffiffiffi
N

p j0i1j0i2 � � � j1ik � � � j0iN−1j0iN; ð15Þ
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OSSIs & Obs. 3
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Bound ENT

FIG. 2. Entanglement criteria for the mixed state in Eq. (14) for
N ¼ 3 in the x-y plane. The fully separable states are contained in
green area, which obeys all the optimal spin-squeezing inequal-
ities (OSSIs) previously known with optimal measurement
directions [44,45] and also our criterion in Observation 3. The
blue area corresponds to the spin-squeezed entangled states that
can be detected by all OSSIs and Observation. 3. The yellow and
purple areas correspond to the entangled states that cannot be
detected by all OSSIs but can be detected by Observation 3, thus
marking the improvement of this Letter compared with previous
results. In particular, the purple area corresponds to the multi-
particle bound entangled states that are not detected by the PPT
criterion for all bipartitions but detected by Observation 3.
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and the state jζ̃Ni ¼ σ⊗N
x jζNi with hζN jζ̃Ni ¼ 0. Note

that the phased Dicke state is not equivalent to the
Dicke state jDN;1i under collective unitary trans-
formations. In Fig. 2, we illustrate the criterion of
Observation 3 for the state ϱx;y for N ¼ 3 on the x-y
plane. Note that the subspace spanned by jζ3i and jζ̃3i
is, after noncollective local unitaries, equivalent to the
maximally entangled subspace of three qubits, as
characterized in Ref. [106].
Our result allows us to detect entangled states that cannot

be detected not only for Eq. (8) but also for all the other
optimal spin-squeezing inequalities previously known
with optimal measurement directions [44,45]. Moreover,
the multipartite bound entanglement of ϱx;y can be also
detected. For N ≥ 4, similar results are obtained, see
Appendix C in the Supplemental Material.
The inequality (13) can be maximally violated by several

GME states. For small N, we have numerically confirmed
that jζNi and jζ̃Ni can reach the maximal violation, that is,
they can be the eigenstates with the largest singular values of
OA. ForN ¼ 3, the eigenvalue decomposition ofOA is given
by OA ¼ 2

ffiffiffi
3

p ðjζ3ihζ3j þ jζ̃3ihζ̃3j − jμ3ihμ3j − jμ̃3ihμ̃3jÞ,
where jμ3i is a state obtained by changing eð2πik=3Þ in
jζ3i to e½2πið4−kÞ=3� and jμ̃3i ¼ σ⊗3

x jμ3i. Here, all the
eigenstates are mutually orthogonal, and the dimension
of this eigensubspace is four, which coincides with
the maximal dimension of a three-qubit completely
entangled subspace that contains no full product state
[107,108]. Finally, we mention that for cases with
N ¼ 4, 5, 6, the matrix rank of OA is respectively
given by 6,24,38.
Entanglement between two ensembles—Let us apply

the strategy of collective randomized measurements to
another scenario where two ensembles are spatially
separated [109–114]. We denote ϱAB as a 2N-qubit state
that contains the two ensembles of N spin-1

2
particles,

where ϱAB ∈HA ⊗ HB with HX ¼ H⊗N
2 for X ¼ A, B.

Supposing that each ensemble can be controlled indi-
vidually, we can perform the collective randomized

measurements to obtain the moments J ðrÞ
X with a fixed

choice ðα; β; γÞ. Note that a related approach to detect
entanglement between two spin ensembles has been
discussed in Ref. [115].
The total collective observables are given by J�l ¼

Jl;A � Jl;B, where Jl;X¼ 1
2

P
N
i¼1σ

ðXiÞ
l ∈HX for l ¼ x, y, z

and Pauli matrices σðXiÞ
l acting on Xith subsystem in the

ensemble X ¼ A, B. Note that one can also formulate the
following result considering a more general case: J�k;l ¼
Jk;A � Jl;B. In a similar manner to Eq. (2b), we can introduce
the random variances ðΔJ�z Þ2UAB

with UAB ¼ UA ⊗ UB.
Denoting the gap as ηUAB

≡ ðΔJþz Þ2UAB
− ðΔJ−z Þ2UAB

, let us
consider its moment

GðrÞ
AB ¼ g

Z
dUAB½ηUAB

�r; ð16Þ

where g is a real constant parameter.
Now we can present the following criterion:
Observation 4.—For a 2N-qubit state ϱAB with the

permutationally symmetric reduced states, any separable
ϱAB obeys

Gð2Þ
AB þ J ð1Þ

A þ J ð1Þ
B − J ð1Þ

A J ð1Þ
B ≤ 1; ð17Þ

where g ¼ ð3=N2Þ2 and ðα; β; γÞ ¼ ð0; 12=N2; 0Þ.
The proof is given in Appendix D of the Supplemental

Material. As the proof’s main idea, we will first simply
evaluate the integrals on the left-hand side in Eq. (17). Then
we will adopt the separability criterion presented in
Ref. [16] (see, Proposition 5 there) in order to find the
entanglement criterion in Eq. (17).
The violation of this inequality allows us to detect

entanglement between the spatially separated two ensem-
bles. In Appendix D, we will demonstrate how the criterion
in Eq. (17) can characterize entanglement between two
ensembles. Also, we will show that Observation 4 can be
extended to the case of m ensembles for m ≥ 3.
Statistically significant tests—Finally, we note that the

statistical analysis of collective randomized measurements
is discussed in Appendix E in the Supplemental Material.
There, we will provide estimations for the necessary
number of measurements required for entanglement detec-
tion with high confidence. Similar discussions can also be
found in Refs. [2,8–10,15].
Conclusion—We have introduced the concept of collec-

tive randomized measurements as a tool for CRFI quantum
information processing. Based on the framework, we have
proposed systematic methods to characterize quantum
correlations. In particular, we showed that our approach
has detected spin-squeezing entanglement, multipartite
bound entanglement, and spatially separated entanglement
in two ensembles.
There are several directions for future research. First, it

would be interesting to extend our work to higher-order
scenarios involving Jkl for k > 2. Such extensions may
facilitate various connections, such as nonlinear spin
squeezing [116] or permutationally invariant Bell inequal-
ities [117–120]. Next, the inequality (13) resembles multi-
partite entanglement witnesses [121]. Exploring this may
lead to more advanced techniques for analyzing multipar-
tite entanglement. Finally, while the standard version of
randomized measurements has found many applications
beyond entanglement detection, e.g., in quantum metrol-
ogy, shadow tomography, or cross-platform verification
[1,2], one may study these possibilities also for the
collective randomized measurements introduced here.
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[93] I. Frérot and T. Roscilde, Phys. Rev. Lett. 126, 140504

(2021).
[94] G. Müller-Rigat, A. Aloy, M. Lewenstein, and I. Frérot,
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Lewenstein, and A. Acín, Science 344, 1256 (2014).

[118] J. Tura, R. Augusiak, A. B. Sainz, B. Lücke, C. Klempt,
M. Lewenstein, and A. Acín, Ann. Phys. (Amsterdam)
362, 370 (2015).

[119] S. Wagner, R. Schmied, M. Fadel, P. Treutlein, N.
Sangouard, and J.-D. Bancal, Phys. Rev. Lett. 119,
170403 (2017).

[120] J. Guo, J. Tura, Q. He, and M. Fadel, Phys. Rev. Lett. 131,
070201 (2023).

[121] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).

PHYSICAL REVIEW LETTERS 133, 060203 (2024)

060203-8

https://doi.org/10.1088/1367-2630/11/8/083002
https://doi.org/10.1088/1367-2630/11/8/083002
https://doi.org/10.1103/PhysRevLett.103.100502
https://doi.org/10.1103/PhysRevLett.103.100502
https://doi.org/10.1103/PhysRevLett.105.250501
https://doi.org/10.1103/PhysRevLett.106.020401
https://doi.org/10.1103/PhysRevLett.106.020401
https://doi.org/10.1103/PhysRevB.89.125117
https://doi.org/10.1103/PhysRevA.90.020301
https://arXiv.org/abs/1708.06986
https://doi.org/10.1103/PhysRevA.103.022601
https://doi.org/10.1103/PhysRevA.103.022601
https://arXiv.org/abs/2210.13475
https://doi.org/10.1007/BF02829441
https://doi.org/10.1103/PhysRevA.98.012313
https://doi.org/10.1103/PhysRevA.98.012313
https://doi.org/10.1126/science.aao2035
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1126/science.aao2254
https://doi.org/10.1038/s41467-019-12192-8
https://doi.org/10.1038/s41467-019-12192-8
https://doi.org/10.1088/1367-2630/ace1a0
https://doi.org/10.22331/q-2023-02-09-914
https://doi.org/10.22331/q-2023-02-09-914
https://doi.org/10.1103/PhysRevA.74.050304
https://doi.org/10.1103/PhysRevA.74.050304
https://doi.org/10.1103/PhysRevLett.122.090503
https://doi.org/10.1103/PhysRevLett.122.090503
https://doi.org/10.1126/science.1247715
https://doi.org/10.1016/j.aop.2015.07.021
https://doi.org/10.1016/j.aop.2015.07.021
https://doi.org/10.1103/PhysRevLett.119.170403
https://doi.org/10.1103/PhysRevLett.119.170403
https://doi.org/10.1103/PhysRevLett.131.070201
https://doi.org/10.1103/PhysRevLett.131.070201
https://doi.org/10.1016/j.physrep.2009.02.004

