
ar
X

iv
:0

70
9.

09
48

v1
 [

qu
an

t-
ph

]
 7

 S
ep

 2
00

7

QUBIT4MATLAB V3.0: A program package

for quantum information science and quantum

optics for MATLAB

Géza Tóth

ICFO-Institut de Ciències Fotòniques, E-08860 Castelldefels (Barcelona), Spain

Research Institute for Solid State Physics and Optics, Hungarian Academy of
Sciences, P.O. Box 49, H-1525 Budapest, Hungary

Abstract

A program package for MATLAB is introduced that helps calculations in quantum
information science and quantum optics. It has commands for the following opera-
tions: (i) Reordering the qudits of a quantum register, computing the reduced state
of a quantum register. (ii) Defining important quantum states easily. (iii) Format-
ted input and output for quantum states and operators. (iv) Constructing operators
acting on given qudits of a quantum register and constructing spin chain Hamil-
tonians. (v) Partial transposition, matrix realignment and other commands related
to the detection of quantum entanglement. (vi) Generating random state vectors,
random density matrices and random unitaries.

Key words: quantum register; spin chain; entanglement
PACS: 03.65.Ud 03.67.-a 75.10.Pq

Program Summary

Title of program: QUBIT4MATLAB V3.0
Program summary URL: http://arxiv.org/abs/0709.0948
Program available from:

http://optics.szfki.kfki.hu/∼toth/qubit4matlab.html
http://www.mathworks.com/matlabcentral/fileexchange/
Operating systems: Any which supports MATLAB 6.5; e.g., Microsoft Win-
dows XP, Linux.
Programming language used: MATLAB 6.5; runs also on Octave

Email address: toth@alumni.nd.edu (Géza Tóth).

Preprint submitted to Elsevier 7 September 2007

http://arxiv.org/abs/0709.0948v1
http://arxiv.org/abs/0709.0948
http://optics.szfki.kfki.hu/~toth/qubit4matlab.html
http://www.mathworks.com/matlabcentral/fileexchange/

1 Introduction

Quantum information science[1] is one of the most rapidly developing field
in physics. Many calculations can be done analytically, however, many tasks
need extensive numerics. Also, analytical calculations can very efficiently be
checked for possible errors by calculating concrete examples numerically. The
subroutine package presented in this paper was written to help the researcher
in quantum information and quantum optics in doing such numerical calcula-
tions.

The programming effort necessary for scientific calculations in quantum physics
depends a lot on the programming language used. In particular, one has to be
able to handle easily large matrices, compute eigenvalues, eigenvectors, etc.
This is certainly possible with MATLAB which is an interpreter language for
mathematical calculations running both under Windows and Linux. Other al-
ternatives may need extensive usage of complicated bracketing or definitions
of complicated data types.

The subroutine package presented is intended to fit smoothly to the philos-
ophy of MATLAB, and makes it possible to write down relatively complex
expressions in a concise way. Even simple functions are defined if they are of-
ten used or their definition makes the structure of programs clearer. After the
programmer runs the main MATLAB code, the relevant quantities, such as
ground state energies of Hamiltonians or the smallest eigenvalue of the reduced
density matrix, can be printed out writing short expressions interactively.

In this paper the commands offered by the QUBIT4MATLAB V3.0 program
package are summarized. The first version appeared in September 2005 on the
MATLAB Central File Exchange [2]. Since there are excellent books on quan-
tum physics [3] and quantum information science [1], an introduction on these
topics is not given, however, appropriate citations help the reader. The paper
is organized as follows. In Sec. 2. basic commands for defining state vectors
and density matrices are described. In Sec. 3 commands follow that are related
to reordering the qudits or tracing out some of the qudits. Sec. 4 definitions of
interesting quantum states, quantum gates and operators are presented. Sec. 5
is about commands for formatted input and output. Sec. 6 lists commands for
defining two-qudit interactions and spin chain Hamiltonians. Sec. 7 is about
commands related to the separability problem. Sec. 8 is about commands us-
ing random matrices. Sec. 9 lists miscellaneous simple commands that make
programming easier. Finally, Sec. 10 summarizes commands that give sparse
matrices.

The variable names most often used in the descriptions of commands are the
following:

2

• rho: Density matrix
• v,v1,v2,phi,phi1,phi2,psi: State vector
• v/rho: A density matrix is expected. If it is not normalized, then it is

automatically normalized. If a state vector is given then it is converted
automatically into a properly normalized density matrix.

• M: Matrix
• OP,OP1, OP2 : Matrix corresponding to a quantum operation
• N: Positive integer indicating the number of qudits
• d: Positive integer indicating the dimension of qudits
• k,l, m, n, k1, k2, n1, n2 : Non-negative integer
• list: List of indices of qudits of a qudit register
• perm: List of indices indicating how to reorder the qudits (see later in detail)
• s: String

The square brackets [and] are used to indicate optional parameters. If such
a parameter is not given then a default value specific to the command is taken.
In particular, for [N] the default value is the value of the global variable N.
For [d] the default value is 2 (qubits).

2 Bras and kets: State vectors and density matrices

The most basic mathematical object for quantum mechanics is the state vec-
tor. It is a vector of complex elements with unit norm. It can be used to
describe pure states. With QUIBIT4MATLAB it can be defined with the ket

command. (Next, ”bra” and ”ket” refers to the usual notation introduced by
Dirac [3].) For example,

phi0=ket([1 0])

defines a two element column vector as a ”ket” vector with elements (1, 0). In
the {|0〉, |1〉} basis this corresponds to the |Φ0〉 = |0〉 state. Another example
is

phi01=ket([1 1]).

This defines a column vector with elements (1√
2
, 1√

2
) which corresponds to

|Φ01〉 = 1√
2
|0〉+ 1√

2
|1〉. Note that ket normalized the vector given in its argu-

ment.

The other fundamental object of quantum mechanics is the density matrix. It
is a Hermitian positive semi-definite matrix with unit trace. Beside pure states,
it can also be used to describe mixed states. A density matrix corresponding
to the previous state vector can be defined as

3

rho=ketbra(phi01)

If we type now rho we obtain

rho =

0.5000 0.5000

0.5000 0.5000

ketbra normalizes the vector in its argument, in case it is not normalized.

There are also further elements of the Dirac notation implemented in QUBIT4MATLAB.
One can define ”bra” vectors, that is the conjugate transpose of ”ket” vectors.
Hence

phi01b=bra([1 1])

is a row vector with elements (1√
2
, 1√

2
) which corresponds to 〈Φ01| = 1√

2
〈0| +

1√
2
〈1|. There is one more additional property of bra. It computes the complex

conjugate of its argument. Thus

phi01c=bra([1 i])

will result in a row vector with elements (1√
2
,− i√

2
).

Moreover, one can define a ”braket” with the command braket.

braket(phi1,phi2)

denotes the scalar product of two state vectors. It is identical to bra(phi1)*ket(phi2).
The expression

braket(phi1,OP,phi2)

where OP is a matrix, denotes bra(phi1)*OP*ket(phi2).

Finally, nm(v/rho) normalizes its argument. If its argument is a vector v

then it gives back v/sqrt(v’*v). If the argument is a row vector then it also
converts it into a column vector. This results in a unit vector. If the argument
is a density matrix rho then nm gives back rho/trace(rho). Latter results in
a matrix with a unit trace.

The summary of commands for implementing the braket notation in MATLAB
and related commands are given in the following list.

• bra(v): Dirac’s ”bra” vector. Normalizes v and converts it into a column
vector in case it was a row vector

4

• ket(v): Dirac’s ”ket” vector. Normalizes v, carries out an element-wise
complex conjugation, and converts v into a row vector in case it was a
column vector

• ketbra(v): Obtaining a density matrix from the state
• ketbra2(v/rho): Like ketbra(v), however, a density matrix can also be

given as an argument. If this is the case, ketbra2 normalizes rho.
• braket(v1,v2): Equivalent to bra(v1)*ket(v2)

• braket(v1,OP,v2): Equivalent to bra(v1)*OP*ket(v2)

• ex(OP,v/rho): Expectation value of an operator for a state vector or a den-
sity matrix. For normalized v and rho, it is equivalent to bra(v)*OP*ket(v)
or trace(OP*rho).

• va(OP,v/rho): Variance of an operator for a state vector or a density ma-
trix. For normalized v and rho, it is equivalent to
bra(v)*OP^2*ket(v)-(bra(v)*OP*ket(v))^2 or
trace(OP^2*rho)-trace(OP*rho)^2.

• nm(v/rho): Normalization of a state vector or a density matrix.

3 Basic operations on the quantum register: Reordering qudits

The basic object QUBIT4MATLAB handles is an array of N qudits of dimen-
sion d. These qudits are numbered from 1 to N. For example, if phi1 and phi2

are single-qudit state vectors, then a two-qudit state vector can be defined as

phi=kron(phi2,phi1).

This defines a product vector. The state of qubit #1 is phi1 and the state of
qubit #2 is phi2. In order to make it easier to handle multi-qudit registers, a
Kronecker product command with more than two arguments is defined: mkron.
For example, mkron(M1,M2,M3)=kron(kron(M1,M2),M3). Moreover, there is
also a ”Kronecker power” function that multiplies a matrix with itself given
times using the Kronecker product. For example,
pkron(M,4)=kron(kron(kron(M,M),M),M).

Many of the following commands have N and d as parameters. Typically, if d
is omitted then it is considered to be 2, while if the parameter N is omitted
then the value of the global variable N is taken instead. Other speciality of the
commands is that at most of the places where a density matrix is expected, a
state vector can also be given. It is automatically converted into a normalized
density matrix.

Next, let us see an example. Let us define the state |φ〉 = (|00〉+ |11〉)|1〉/
√

2
as

5

phi=ket([0 1 0 0 0 0 0 1])

Then we can flip the last two qudits with the command

phi2=reorder(phi,[3 1 2])

When we print out phi2, the result is (|010〉 + |111〉)/
√

2. Thus the right
and the middle qubits are exchanged. In general, the second argument of
reorder is a list describing, how to reorder (permute) the qubits. For N
qubits, N, N −1, N −2, ..., 2, 1 corresponds to the original configuration. Thus
the following command does not change the state phi

phi3=reorder(phi,[3 2 1])

The command

phi4=reorder(phi,[1 3 2])

shifts the qudits cyclically to the right. When we print out phi4, the result
is (|100〉 + |111〉)/

√
2. The meaning of the parameter describing the permu-

tation is even clearer if we write the numbering of qudits and the row vector
describing the permutations below each other

[3 2 1]

[1 3 2]

This means that qudit #3 will move to qudit #1, qudit #2 will move to qudit
#3, and qudit #1 will move to qudit #2. The command reorder also works
for qudits with a dimension larger than two, if a third argument is given with
the dimension.

Another fundamental operation is computing the reduced density matrix, after
tracing out some of the qubits. The following operation shows how to compute
the reduced state, after tracing out qubits 2 and 3

rho_red=remove(phi,[3 2])

The second argument contains the list of qubits that have to be traced out.
This command also works for qudits with a dimension larger than two, if a
third argument is given. A related command is keep. It is essentially the same
as remove, except that the list of the qubits that should be kept must be given.

The summary of commands for ordering/reordering qudits are given in the
following list.

• mkron(M1,M2,M3,...): Kronecker product with several arguments
• pkron(M,n): Kronecker product of M with itself n times

6

• reorder(rho,perm,[d]): Reorder the qudits of the density matrix rho ac-
cording the permutation given in perm. If a state vector is given instead of
rho, then the result is also a state vector.

• reordermat(perm,[d]): The matrix corresponding to the quantum opera-
tion realizing a given permutation of qudits. It gives the matrix that realizes
the permutation given by perm on a state vector of the qudit register.

• reordervec(perm,[d]): The vector corresponding to the permutation of
qudits. The ith element of the vector tells us where to move the ith element
of a state vector during the multi-qudit register reordering.

• shiftquditsleft(rho,[d]): Shifts the qudits of rho to the left
• shiftquditsright(rho,[d]): Shifts the qudits of rho to the right
• swapqudits(rho,k,l,[d]): Swaps the qudits k and l of a quantum state
rho

• remove(rho,list,[d]): Reduced density matrix obtained from rho, after
the qudits given in list are traced out

• keep(rho,list,[d]): Reduced density matrix obtained from rho, after the
qudits not given in list are traced out. Thus only the qudits given in list

are kept.

4 Definitions of important quantum states, quantum gates and op-

erators

There are several commands defining important quantum states and useful
operators. E.g., the simple command paulixyz defines the Pauli spin matrices
x, y and z. Moreover e is defined as the 2 × 2 identity matrix. paulixyz is
often used in programs dealing with spin chains. The list of such commands
are:

• ghzstate([N]): State vector for the N-qubit Greenberger-Horne-Zeilinger
state [4]

• wstate([N]): State vector for the N-qubit W-state
• cstate([N]): State vector for the N-qubit cluster state [5]
• rstate([N]): State vector for the N-qubit ring cluster state [6]
• dstate(e,[N]): State vector for the N-qubit symmetric Dicke state with e

excitations [7,8]
• mmstate([d],[N]): Density matrix of the maximally mixed state of N qudits

of dimension d

• mestate(d): State vector for the maximally entangled state of two qudits
of dimension d

• singlet([N]): State vector for the singlet of N qubits; implemented for
N= 2 and 4.

• smolinstate: Density matrix of the state defined by Smolin [9]

7

• gstate(Gamma): State vector for a graph state that was created with the
Ising interaction pattern given in the N × N matrix Gamma [6]

• gstate_stabilizer(Gamma): Gives the generators as a cell array for the
stabilizer of the graph state mentioned above [6,10]

• BES_Horodecki3x3(a): Density matrix of Horodecki’s 3×3 bound entangled
state [11]. Parameter a must have a value between 0 and 1.

• BES_Horodecki4x2(a): Density matrix of Horodecki’s 4×2 bound entangled
state [11]. Parameter a must have a value between 0 and 1.

• BES_UPB3x3: Density matrix of the 3 × 3 bound entangled state based on
unextendible product bases [12]

• U_CNOT: 4 × 4 unitary matrix of a CNOT gate
• U_H: 2 × 2 unitary matrix for the Hadamard gate
• paulixyz: Defines Pauli matrices x,y, z and e=eye(2)

• su3: Defines the SU(3) generators (Gell-Mann matrices) m1, m2,...,m8 and
ee as the 3 × 3 identity matrix

• su3_alternative: Defines alternative SU(3) generators [13]

5 Formatted input and output

The basic command for formatted output of a quantum state is printv. It
prints a state vector as the superposition of the computational basis states.
This function works only for qubits at present. The form printv(v,treshold)
makes it possible to give the threshold below which an element is considered
zero. Its usage is demonstrated on the following example

printv(phi2)

ans = 0.70711|010>+0.70711|111>

The command that can be used for the formatted output of matrices is
decompose. Its use is shown on the example

% Define the pauli spin matrices x,y, and z

paulixyz

% Define Heisenberg interaction for two qubits

H_H=kron(x,x)+kron(y,y)+kron(z,z)

H_H =

1 0 0 0

0 -1 2 0

0 2 -1 0

0 0 0 1

% Print out the decomposition of H_H

decompose(H_H)

ans =

8

xx+yy+zz

It decomposes an operator into the linear combinations of products of Pauli
spin matrices. Giving a second argument different from zero makes decompose
print the results in LaTeX format. Giving a third argument makes it possible
to give the threshold below which a coefficient is considered zero (and because
of that it is not printed).

• printv(v,[threshold]): A result is a string, giving the state vector as
the superposition of multi-qubit computational basis states. The parameter
threshold defines the limit value below which a vector element is considered
zero. If it is omitted then it is taken to be 10−4.

• decompose(M,[p],[threshold]): The result is a string. It contains an ex-
pression describing the matrix M as the linear combination of products of
Pauli spin matrices. If p is not zero then the result is given in LaTeX format.
The parameter threshold defines the limit value below which a coefficient
is considered zero. If it is omitted then it is taken to be 10−14.

• paulistr(s): Converts a string describing an operator constructed as a sum
of products of Pauli spin matrices into an operator. E.g., op=paulistr(’5*xye+xyz’)
is equivalent to paulixyz;op=5*mkron(x,y,e)+mkron(x,y,z) .

6 Two-qudit interactions and spin chains

When handling multi-qudit systems, one has to be able to concisely define op-
erators working on a given qudit. The basic command for that is quditop(OP,k,[N]).
It defines an N-qudit quantum operator which corresponds to operator OP act-
ing on the kth qudits. Qudit position is interpreted as with reorder. The
dimension of the qudit is deduced from the size of OP. If OP is sparse, quditop
will also produce a sparse matrix.

Two-qudit operators can be defined by twoquditop(OP,k1,k2,[N]). It de-
fines an N-qudit quantum operator which corresponds to the two-qudit oper-
ator OP acting on the k1th and k2th qudits. If OP is sparse, twoquditop will
also produce a sparse matrix. The command interact(OP1,OP2,n1,n2,[N])
is an alternative way to construct an operator acting on two qubits. It gives an
operator acting on qudits n1 and n2, respectively, with operators OP1 and OP2.
N is the number of qudits. If argument N is omitted than the default is taken
to be the value of global variable N. The dimension of the qudit is obtained
from the size of OP1.

When modeling spin chains, it is needed to construct expressions with two-
body interactions acting between nearest-neighbors. A general form of such a

9

nearest-neighbor interaction, for aperiodic boundary condition, is

Hnn(a, b, N) :=
N−1∑

k=1

a(k)b(k+1), (1)

where a and b are some single-qudit operators. Their superscript indicates on
which qudit they act on. Hnn(a, b) can be obtained by writing nnchain(a,b,[N]).
The same command for the case of periodic boundary conditions correspond-
ing to

Hnn,p(a, b, N) :=
N−1∑

k=1

a(k)b(k+1) + aNb1 (2)

is nnchainp(a,b,[N]). When modeling spin chains, it is also needed to define
expressions of the type

Hcoll(a, N) :=
N∑

k=1

a(k), (3)

where a is again a single-qudit operator. Such an expression can be obtained
writing coll(a,N). They are used for defining external fields for spin chains.

After the general commands, we discuss commands specific to particular spin
chains. ising(B,[N]) gives the ferromagnetic Ising Hamiltonian in a trans-
verse field

HIsing(B, N) := −
N−1∑

k=1

σ(k)
z σ(k+1)

z + B
N∑

k=1

σ(k)
x . (4)

Similarly, heisenberg(N) gives the Heisenberg Hamiltonian defined as

HHeisenberg(N) :=
N−1∑

k=1

σ(k)
x σ(k+1)

x +
N−1∑

k=1

σ(k)
y σ(k+1)

y +
N−1∑

k=1

σ(k)
z σ(k+1)

z . (5)

Both commands have versions for periodic boundary conditions: isingp(B,[N])
and heisenbergp([N]). Finally, the XY chain is in external field is defined
as

HXY(Jx, Jy, B) := Jx

N−1∑

k=1

σ(k)
x σ(k+1)

x + Jy

N−1∑

k=1

σ(k)
y σ(k+1)

y + B
N∑

k=1

σ(k)
x . (6)

The command giving the minimum for the XY chain for separable states is

10

xy_classical_ground(Jx,Jy,B). As the name suggests, this minimum is the
same as the ground state of the classical XY chain.

• quditop(OP,k,[N]): Operator acting on the kth qudit of an N-qudit register
• twoquditop(OP,k1,k2,[N]): Operator acting on qudits k1 and k2 of a N-

qudit register
• coll(OP,[N]): Defines a collective multi-qudit operator
• interact(OP1,OP2,n1,n2,[N]): Two-qudit interaction acting on qudits n1

and n2 of a N-qudit register
• nnchain(OP1,OP2,[N]): Spin chain Hamiltonian with a nearest-neighbor

interaction with an aperiodic boundary condition
• nnchainp(OP1,OP2,[N]): Spin chain Hamiltonian with a nearest-neighbor

interaction with a periodic boundary condition
• ising(B,[N]): Hamiltonian for an Ising spin chain in a transverse field;

aperiodic boundary condition
• isingp(B,[N]): Hamiltonian for an Ising spin chain in a transverse field;

periodic boundary condition
• ising_ground(B): Computes the ground state energy per qubit for an

Ising chain in transverse field B for the thermodynamic limit. The form
ising_ground(B,N) computes the same thing for an N -qubit chain with a
peridodic boundary condition.

• ising_free(B,T) Free energy per qubit for an Ising chain in a transverse
field B for the thermal state for the thermodynamic limit.

• ising_thermal(B,T): Internal energy per spin for an Ising chain in trans-
verse field B for the thermodynamic limit. The form ising_thermal(B,N)

computes the same thing for an N -qubit chain with a peridodic boundary
condition.

• ising_classical_ground(B): Ground state energy per spin for the classi-
cal Ising chain

• heisenberg(B,[N]): Heisenberg spin chain Hamiltonian
• heisenbergp(B,[N]): Heisenberg spin chain Hamiltonian with a periodic

boundary condition
• xy_classical_ground(Jx,Jy,B): Ground state energy per spin for the

classical XY chain
• grstate(H): Normalized ground state of a Hamiltonian
• thstate(H,T): Thermal state of a Hamiltonian H at temperature T. It uses

the formula ρT = exp(−H/T)/Tr[exp(−H/T)].
• orthogobs(d): Orthogonal observables for a qudit with dimension d. The

orthogonal observables used are the ones defined in Ref. [14]. That is, these
are the observables of the form |k〉〈k|, (|k〉〈l| + |l〉〈k|)/

√
2, or (|k〉〈l| −

|l〉〈k|)/
√

2i. Let us denote these Hermitian observables by {Mm}d2

m=1. They
satisfy the condition Tr(MmMn) = 0 if m 6= n and Tr(M2

m) = 1.

11

7 Separability

A quantum state is separable if its density matrix can be written as the convex
combination of product states, i.e., as [15]

ρ =
∑

k

ρ
(1)
k ⊗ ρ

(2)
k ⊗ ρ

(3)
k ⊗ ... ⊗ ρ

(N)
k , (7)

where N is the number of qudits, pk ≥ 0 and
∑

k pk = 1. If a quantum state
is not separable, then it is entangled.

Entangled states can be used as a resource in several quantum information
processing tasks. To decide whether a state is entangled or separable is a
very important, yet, in general, unsolved question of quantum information
science. However, there are powerful sufficient condition for entanglement in
the literature, such as the positive partial transpose (PPT) criterion [17,18] or
the computable cross norm-realignment (CCNR) criterion [19,20]. For small
systems we even have necessary and sufficient conditions, and even the amount
of entanglement can be computed.

For two-qubit systems the entanglement of formation, or equivalently, the
concurrence [16] can be computed directly from the density matrix. This can
be done with the command concurrence(rho).

A central notion is the partial transposition in quantum information. The fol-
lowing command computes the partial transpose of ketbra(phi) with respect
to the third qubit

rho_pt=pt(phi,3)

In general, the second argument is a list of the indices of qudits. The transpo-
sition will be carried out for the qubits of this list. The command also works
for qudits with dimension larger than two, if a third argument is given. The
sum of the absolute values of the negative eigenvalues of the partial transpose
is called negativity [21]. This can be computed by the command negativity.
It needs the same parameters as pt, however, it returns a scalar value.

Beside partial transposition, there are other useful rearrangements of the den-
sity matrix elements. Such an operation is called realignment. For bipartite
system, such a command is realign. If the trace-norm of the realigned matrix
is larger than one then the state is entangled. This can be checked by the ccnr
command.

There are some numerical routines looking for the maximum of an operator for
product states. This is useful for experiments: If the operator is measured and a

12

larger expectation value is obtained then we know that the state is entangled.
The routines are based on simple annealing-like search for the maximum.
While it is not guaranteed that these routines find really the global maximum,
they work quite well for systems of a couple of qubits [22]. For example, the
maximum for separable states for a 4-qubit operator can be obtained

>> % Define the pauli spin matrices x,y, and z

paulixyz

% Define Collective operators

Jx=coll(x,4)/2; Jy=coll(y,4)/2;

% Print out the maximum for separable states

ms=maxsep(Jx^2+Jy^2)

ms =

5.0000

Analitical calculation shows that this is indeed the maximum for separable
states [8]. Now, the maximum for quantum states in general can be obtained
as

>> maxeig(Jx^2+Jy^2)

ans =

6

Thus there are quantum states for which the expectation values of Jx^2+Jy^2
is larger than 5. These states are all entangled.

Finally, we briefly mention, that in a multi-qubit experiment it is typically
not enough to show that a quantum state is entangled. One has to prove that
genuine multi-qubit entanglement was present [27]. It is defined as follows. If a
pure state can be written as state separable with respect to some bipartition of
the qubits then it is called biseparable. E.g., such a state is (|01〉−|10〉)/

√
2⊗

(|01〉 − |10〉)/
√

2. This state is the tensor product of two two-qubit singlets.
While it is entangled, it is separable with respect to the bipartition (12)(34).
A mixed state is biseparable if it can be obtained by mixing biseparable pure
states. If a quantum state is not biseparable then it is genuine multi-qubit
entangled. Several of the commands in QUBIT4MATLAB are related to the
detection of genuine multi-qubit entanglement. For example, the maximum
for biseparable states for the previous operator can be obtained as

>> maxb(Jx^2+Jy^2)

ans =

5.2320

Analytical calculation gives 7
2

+
√

3 ≈ 5.2321 [8,28].

13

The list of commands related to separability problem is summarized in the
following table.

• pt(rho/v,list,[d]): Partial transposition of rho. list contains the list
with indices of qudits. The qudits on this list are transposed.

• pt_nonorm(M,list,[d]): Like pt but the matrix given is not normalized.
• negativity(rho/v,list,[d]): Negativity of rho
• realign(M): Computes the matrix obtained from realigning M.
• mrealign(M,iperm,[d]): Computes the matrix obtained from realigning

the multi-qudit operator M. iperm has now twice as many elements as the
number of qudits. It shows how to permute the indices of the density matrix,
if for the parties we use multiply indices. E.g., ρi1i2i3,j1j2j3 with ik, jk = 0, 1
would describe a three-qubit state.

• cnnr(rho/v): Gives directly the trace norm of the realigned matrix. A state
is entangled, if the trace norm of the realigned matrix is larger than one.

• optspinsq(rho): Optimal spin squeezing inequalities [29]. Gives back a
negative value if the multi-qubit state rho is detected as entangled by the op-
timal spin squeezing inequalities. The form [fmin,f123]=optspinsq(rho)

gives back in f123 a three element array. Each element of the array gives −1
times the violation of the corresponding spin squeezing inequality. fmin is
the minimum of the three values. If one of them is negative then the state is
detected as entangled. Beside the inequalities themselves, a method is also
implemented that looks for the optimal choice of x, y, and z coordinates.
(See Ref. [29].)

• maxsep(OP,[d],[par]): Looks for the maximum for product states. It does
not necessarily find the global maximum, but for small systems it produces
good results. d gives the dimension of the qudits. par gives the parameters
for the search algorithm. It has three elements. First element: Number of
random trials in the first phase. Second element: Number of random trials
in the second phase. In the second phase the routine looks for the maximum
around the maximum found in the first phase. Third element: Constant de-
termining accuracy. The default value for par is [10000 20000 0.005].

• maxsymsep(OP,[d],[par]): Computes the maximum only for a special
case, i.e., for symmetric states. Because of that it is faster than maxsep.
d gives the dimension of the qudits. par plays the same role as for maxsep.

• maxbisep(OP,list,[par]): Gives maximum value for an operator for bisep-
arable states. list determines the biparitioning. That is, the bipartition is
considered in which qubits given in list are in one group, the rest of the
qubits are in the other group. par plays the same role as for maxsep. At the
moment works only for qubit registers.

• maxb(OP,[par]): Considers the maximum for all bipartitions. It is based
on numerical optimization. par plays the same role as for maxsep. It can
be used, for example, when making calculations for entanglement witnesses
detecting genuine multi-qubit entanglement in experiments. One can check
with it the bounds calculated analytically. At the moment works only for

14

qubit registers.
• schmidt(v,list): Schmidt coefficients for a pure state v for the bipartition

determined by list. At the moment works only for qubit registers.
• overlapb(v): Maximum overlap with biseparable states for a state vector
v. It is not based on numerical search, always gives correct result. In fact,
the maximum overlap is just the square of the largest Schmidt coefficient
over all bipartition [30]. At the moment works only for qubit registers.

8 Commands using random matrices

Very often it is needed to generate random state vectors, density matrices or
random unitaries. QUBIT4MATLAB has a number of commands for these.

A random state vector (a vector of complex elements with unit length) can be
generated in the following way [31]: (i) Generate a vector such that both the
real and the imaginary parts of the vector elements are random numbers that
have a normal distribution with a zero mean and unit variance. (ii) Normalize
the vector. It is easy to prove that the random vectors obtained this way are
equally distributed on the unit sphere.

An N -qudit random density matrix with a distribution uniform according to
the Hilbert-Schmidt norm can be obtained in two steps [32]: (i) Generate a
a 2N -qudit pure state with a distribution uniform over the unit sphere. (ii)
Trace out half of the qudits.

Finally, an N × N random unitary with a distribution uniform according to
the Haar measure can be obtained as follows [31]: (i) Generate N vectors with
N complex elements and with a uniform distribution over the unity sphere.
(ii) Orthogonalize the vectors.

The list of commands using these ideas is the following:

• rvec(N,d): Gives a random state vector for a system of N qudits of dimen-
sion d. The distribution is uniform on the complex sphere of radius 1.

• rproduct(N,d): Gives the tensor product of N random state vectors of size
d.

• rdmat(N,d): Gives a random density matrix for a system of N qudits of
dimension d. The distribution of the matrix is uniform according to the
Hilbert-Schmidt norm.

• runitary(N,d): Gives a random unitary matrix for a system of N qudits
of dimension d. The distribution of the matrix is uniform according to the
Haar measure.

• twirl(rho,[d],[Nit]): Twirls the multi-qudit density matrix rho. d is the

15

dimension of the qudits. Nit is the number of iterations. The algorithm used
is not simply averaging over random unitaries and converges very fast (for
the algorithm, see Ref. [33].) If d is omitted then it is taken to be 2. If Nit is
omitted, it is taken to be 100. The form [rho2,difference]=twirl(rho)

gives also the norm of the difference between the original and the twirled
state. The difference is computed through the matrix norm ‖A‖ =

∑
kl ‖Akl‖2.

The difference is zero for Werner states.
• twirl2(rho,[d],[Nit]): Gives the maximal difference between a multi-

qudit state rho and the state obtained from it by a multilateral unitary
rotation of the form U ⊗U ⊗U ⊗ ...⊗U. The difference is computed through
the matrix norm ‖A‖ =

∑
kl ‖Akl‖2. d is the dimension of qudits. If omit-

ted then it is taken to be 2. Nit is the number of random unitaries used
for finding the maximum. If omitted then it is taken to be 100. The form
[difference,U0]=twirl2(rho) gives also back the unitary U0 for which
the difference is the largest between the original and the rotated state.

9 Miscellaneous simple commands

The following simple commands help to write programs concisely. We discuss
two of them in more detail.

trnorm(M) gives the trace-norm of the matrix M. The trace-norm is defined as
||M || = Tr(

√
M †M). It equals the sum of the singular values of the matrix.

addnoise(rho/v,p) adds white noise to quantum state, i.e., it computes

ρ′(p) = pρ + (1 − p)
1

Tr(1)
. (8)

The second term is the appropriately normalized identity matrix which corre-
sponds to the density matrix of the completely mixed state.

• proj_sym(N,[d]): Projector to the symmetric subspace of an N-qudit reg-
ister with qudits of dimension d. At the moment only N= 2 is implemented.

• proj_asym(N,[d]): Projector to the antisymmetric subspace of an N-qudit
register with qudits of dimension d. At the moment only N= 2 is imple-
mented.

• maxeig(M): Maximum eigenvalue of a matrix. Defined as max(real(eig(M))).
• mineig(M): Minimum eigenvalue of a matrix. Defined as max(real(eig(M))).
• trace2(M): Trace-square of a matrix
• trnorm(M): Trace-norm of a matrix
• comm(A,B): Commutator, i.e., comm(A,B) = A*B-B*A
• addnoise(rho/v,p): Adds white noise to a quantum state

16

• binom(m,n): Binomial; defined as factorial(n)/factorial(n-m)/factorial(m)
• qvec([N],[d]): Empty state vector, filled with zeros, for N qudits of di-

mension d

• qsize(rho/v,[d]): Size of state vector or density matrix in qudits of di-
mension d

• qeye([N],[d]): Identity matrix for N qudits of dimension d

10 Commands for sparse matrices

Sparse matrices make it possible to store large matrices with many zero en-
tries very efficiently. In QUBIT4MATLAB there are several commands that
are realized both for full matrices and for sparse matrices. There are even
commands that are only realized for sparse matrices. These are related to
two-dimensional spin systems.

Next, the sparse commands of QUBIT4MATLAB are listed. For those that
have a non-sparse version, only a short description is given.

• spreordermat: Sparse version of reordermat
• spcoll: Sparse version of coll
• spinteract: Sparse version of interact
• spnnchain: Sparse version of nnchain
• spnnchainp: Sparse version of nnchainp
• spising: Sparse version of ising
• spisingp: Sparse version of isningp
• spquditop: Sparse version of quditop
• sptwoquditop: Sparse version of twoquditop
• splatticep(op1,op2,Nx,Ny): Gives a two-dimensional lattice Hamiltonian

for nearest-neighbor interaction, periodic boundary condition, sparse ver-
sion. op1 and op2 define the two-qudit interaction, Nx and Ny define the
size of the two-dimensional lattice.

• splattice(op1,op2,Nx,Ny): Gives a two-dimensional lattice Hamiltonian
for nearest-neighbor interaction, aperiodic boundary condition, sparse ver-
sion. op1 and op2 define the two-qudit interaction, Nx and Ny define the size
of the two-dimensional lattice.

• spising2Dp(B,Nx,Ny): Gives the two-dimensional ferromagnetic Ising Hamil-
tonian, periodic boundary condition, sparse version. Gives the two-dimensional
Hamiltonian with an Ising interaction and an transverse field. B defines-
the strength of the external field. Nx and Ny define the size of the two-
dimensional lattice.

17

11 Summary and outlook

The QUBIT4MATLAB 3.0, a program package for MATLAB was introduced.
This package helps with the calculations in quantum information science and
quantum optics. The basic object it handles is an array of qudits. All qudits
of the array are supposed to have the same dimension. The program package
has routines for reordering the qudits, tracing out some of the qudits, etc. It
has several commands for helping to define easily Hamilton operators for spin
chains. It has several commands related to entanglement detection, such as
the partial transposition or the realignment of the density matrix. In future,
it would be interesting to extend the routines to handle arrays of qudits of
various dimensions. This should be done without making the notation much
more complicated or making the routines much slower.

12 Acknowledgement

We thank J.J. Garćıa-Ripoll, O. Gühne and M.M. Wolf for fruitful discussions.
This work was supported by the Spanish MEC (Ramon y Cajal Programme,
Consolider-Ingenio 2010 project ”QOIT”). We also thank the support of the
National Research Fund of Hungary OTKA (Contract No. T049234) and the
Hungarian Academy of Sciences (János Bolyai Programme).

References

[1] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press, Cambridge, 2000.

[2] The package can be downloaded from the MATLAB file exchange at
http://www.mathworks.com/matlabcentral/fileexchange/

[3] D.J. Griffiths, Introduction to Quantum Mechanics, Prentice-Hall, New Jersey,
1995.

[4] D.M. Greenberger, M.A. Horne, A. Shimony, A. Zeilinger, Am. J. Phys. 58
(1990) 1131.

[5] H.J. Briegel, R. Raussendorf, Phys. Rev. Lett. 86 (2001) 910.

[6] M. Hein, J. Eisert, H.J. Briegel, Phys. Rev. A 69 (2004) 062311.

[7] R.H. Dicke, Phys. Rev. 93 (1954) 99.

[8] G. Tóth, J. Opt. Soc. Am. B 24 (2007) 275.

18

http://www.mathworks.com/matlabcentral/fileexchange/

[9] J.A. Smolin, Phys. Rev. A 63 (2001) 032306.

[10] D. Gottesman, Phys. Rev. A 54 (1996) 1862.

[11] P. Horodecki, Phys. Lett. A 232 (1997) 333.

[12] C.H. Bennett, D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, B.M. Terhal,
Phys. Rev. Lett. 82 (1999) 5385.

[13] J. Lawrence, Phys. Rev. A 70 (2004) 012302.

[14] S. Yu, N.-L. Liu, Phys. Rev. Lett. 95 (2005) 150504.

[15] R.F. Werner, Phys. Rev. A 40 (1989) 4277.

[16] W.K. Wootters, Phys. Rev. Lett. 80 (1998) 2245.

[17] M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223 (1996) 1.

[18] A. Peres, Phys. Rev. Lett. 77 (1996) 1413.

[19] O. Rudolph, quant-ph/0202121.

[20] K. Chen, L.-A. Wu, Quant. Inf. Comp. 3 (2003) 193.

[21] G. Vidal, R.F. Werner, Phys. Rev. A 65 (2002) 032314.

[22] For works on the numerical solution of the separability problem see
Refs. [23,24,25,26].

[23] F.G.S.L. Brandão, R. O. Vianna, Phys. Rev. Lett. 93 (2004) 220503.

[24] F.G.S.L. Brandão, R. O. Vianna, Phys. Rev. A 70 (2004) 062309.

[25] J. Eisert, P. Hyllus, O. Gühne, M. Curty, Phys. Rev. A 70 (2004) 062317.

[26] A.C. Doherty, P.A. Parrilo, F.M. Spedalieri, Phys. Rev. A 71 (2005) 032333.

[27] A. Aćın, D. Bruß, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 87 (2001)
040401.

[28] N. Kiesel, C. Schmid, G. Tóth, E. Solano, H. Weinfurter, Phys. Rev. Lett. 98
(2007) 063604.

[29] G. Tóth, C. Knapp, O. Gühne, H.J. Briegel, quant-ph/0703018.

[30] M. Bourennane, M. Eibl, C. Kurtsiefer, S. Gaertner, H. Weinfurter, O. Gühne,
P. Hyllus, D. Bruß, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 92 (2004)
087902 .

[31] M.M. Wolf, private communication (2005).

[32] K. Życzkowski, H.-J. Sommers, J. Phys. A 34 (2001) 7111.

[33] G. Tóth, J.J. Garćıa-Ripoll, Phys. Rev. A 75 (2007) 042311.

19

http://arxiv.org/abs/quant-ph/0202121
http://arxiv.org/abs/quant-ph/0703018

	Introduction
	Bras and kets: State vectors and density matrices
	Basic operations on the quantum register: Reordering qudits
	Definitions of important quantum states, quantum gates and operators
	Formatted input and output
	Two-qudit interactions and spin chains
	Separability
	Commands using random matrices
	Miscellaneous simple commands
	Commands for sparse matrices
	Summary and outlook
	Acknowledgement
	References

