Quantum Wasserstein distance based on an optimization over separable states Quantum 7, 914 (2023)

<u>G. Tóth^{1,2,3,4,5} and J. Pitrik^{5,6,7}</u>

 ¹University of the Basque Country UPV/EHU, Bilbao, Spain
 ²EHU Quantum Center, University of the Basque Country UPV/EHU, Spain
 ³Donostia International Physics Center (DIPC), San Sebastián, Spain
 ⁴IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
 ⁵Wigner Research Centre for Physics, Budapest, Hungary
 ⁶Alfréd Rényi Institute of Mathematics, Budapest, Hungary
 ⁷Department of Analysis,Budapest University of Technology and Economics, Budapest, Hungary

Quantum Matter, 8 May 2024, San Sebastian

Outline

Motivation

Connecting Wasserstein distance to entanglement theory

Background

- Quantum Wasserstein distance
- Quantum Fisher information

Wasserstein distance and separable states

- Quantum Wasserstein distance based on an optimization over separable states
- Relation to entanglement conditions

• Many distance measures are maximal for orthogonal states.

- Recently, the Wasserstein distance appeared, which is different and this makes it very useful.
- For the quantum case, surprisingly, the self-distance can be nonzero.

Can we connect these to entanglement theory and/or quantum metrology?

Outline

Motivatio

Connecting Wasserstein distance to entanglement theory

Background

Quantum Wasserstein distance

Quantum Fisher information

Wasserstein distance and separable states

- Quantum Wasserstein distance based on an optimization over separable states
- Relation to entanglement conditions

Classical Wasserstein distance - a very long past

- Monge, 1781; Kantorovich, Nobel Memorial Prize in Economic Sciences, 1975.
- Distance between probability distributions defined as

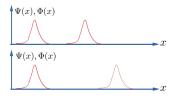
$$W_{p}(\mu,\nu) = \left(\min_{\pi} \int d(x,y)^{p} \pi(x,y) dx dy\right)^{1/p},$$

where d(x, y) is the distance of x and y, $\pi(x, y)$ is a distribution with marginals $\mu(x)$ and $\nu(y)$, p is a number, and p = 2 is a good choice.

- "cost of moving sand from a distribution to the other one."
- Used in very many applications in machine learning, engineering, various optimization problems.

Quantum Wasserstein distance - recent efforts

 Many distance measures are maximal for orthogonal states, e.g., for the following state-pairs.



- In the second example, the two states are further apart from each other, based on common sense.
- The quantum Wasserstein distance should recognize this since it is related to the "cost of moving sand from a distribution to the other one."
- Indeed, because of that the quantum Wasserstein distance can be used for machine learning.
- G. De Palma, M. Marvian, D. Trevisan, and S. Lloyd, IEEE Transactions on Information Theory 67, 6627 (2021).

Quantum Wasserstein distance

 Definition.—The square of the distance between two quantum states described by the density matrices *ρ* and *σ* is

$$D_{\text{DPT}}(\varrho, \sigma)^{2} = \frac{1}{2} \min_{\varrho_{12}} \sum_{n=1}^{N} \qquad \text{Tr}[(H_{n}^{T} \otimes \mathbb{1} - \mathbb{1} \otimes H_{n})^{2} \varrho_{12}],$$

s. t.
$$\varrho_{12} \in \mathcal{D},$$

$$\text{Tr}_{2}(\varrho_{12}) = \varrho^{T},$$

$$\text{Tr}_{1}(\varrho_{12}) = \sigma,$$

where \mathcal{D} is the set of density matrices, and H_n are Hermitian matrices.

• Note the relation to the representability problem.

G. De Palma and D. Trevisan, Quantum optimal transport with quantum channels, Ann. Henri Poincaré 22, 3199 (2021).

Examples of other approaches: Życzkowski, Slomczynski; Caglioti, Golse, Mouhot, Paul; Bistron, Cole, Eckstein, Friedland, Życzkowski.

Self-distance can be nonzero (unlike in the classical case)

• The self-distance of a state is

$$D_{\mathrm{DPT}}(\varrho,\varrho)^2 = \sum_{n=1}^N I_{\varrho}(H_n),$$

where the Wigner-Yanase skew information is defined as

$$I_{\varrho}(H) = \operatorname{Tr}(H^2 \varrho) - \operatorname{Tr}(H \sqrt{\varrho} H \sqrt{\varrho}).$$

- This connects Wasserstein distance and quantum metrology.
- The classical case corresponds to [ρ, H_n] = 0. For that, D_{DPT}(ρ, ρ)² = 0.

G. De Palma and D. Trevisan, Quantum optimal transport with quantum channels, Ann. Henri Poincaré 22, 3199 (2021).

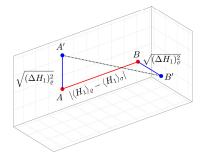
How to compute the Wasserstein distance?

- The distance can be computed by semidefinite programming.
 → This might be the reason that it has appeared recently.
- For a pure ϱ and a mixed σ , the distance is given as

$$\begin{split} D_{\mathrm{DPT}}(\varrho,\sigma)^2 \\ &= \frac{1}{2} \sum_{n=1}^{N} \left[\left(\Delta H_n \right)_{\varrho}^2 + \left(\Delta H_n \right)_{\sigma}^2 + \left(\langle H_n \rangle_{\varrho} - \langle H_n \rangle_{\sigma} \right)^2 \right], \end{split}$$

see the following figure, where $(\Delta H_n)^2$ is the variance.

How to compute the Wasserstein distance? II



- N = 1, a single operator H_1 is given.
- ϱ is pure, σ is mixed.
- The quantum Wasserstein distance equals $1/\sqrt{2}$ times the usual Euclidean distance between *A*' and *B*'.

GT and J. Pitrik,

Quantum Wasserstein distance based on an optimization over separable states, Quantum 7, 914 (2023).

Recent efforts to prove the triangle inequality

• For any ρ, τ , and σ the modified triangle inequality holds

 $D_{\text{DPT}}(\varrho, \sigma) \leq D_{\text{DPT}}(\varrho, \tau) + D_{\text{DPT}}(\tau, \tau) + D_{\text{DPT}}(\tau, \sigma).$

• Conjecture: a modified version of the quantum optimal transport defined by

$$d(\varrho,\omega):=\sqrt{D_{
m DPT}^2(\varrho,\omega)-[D_{
m DPT}^2(\varrho,\varrho)+D_{
m DPT}^2(\omega,\omega)]/2}.$$

is a metric.

G. De Palma and D. Trevisan, Ann. Henri Poincaré 22, 3199 (2021).

• Triangle inequality for quantum Wasserstein divergences

$$d(\tau, \varrho) + d(\varrho, \omega) \leq d(\tau, \omega)$$

holds for any mixed τ , ω , any pure ρ and any quadratic cost + strong numerical evidence for general states.

G. Bunth, J. Pitrik, T. Titkos, and D. Virosztek, arxiv:2402.13150.

Outline

Motivatio

Connecting Wasserstein distance to entanglement theory

Background

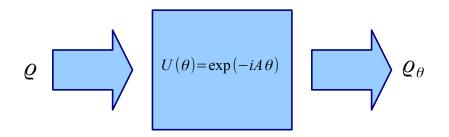
- Quantum Wasserstein distance
- Quantum Fisher information

Wasserstein distance and separable states

- Quantum Wasserstein distance based on an optimization over separable states
- Relation to entanglement conditions

Quantum metrology

Fundamental task in metrology



• We have to estimate θ in the dynamics

$$U = \exp(-iA\theta).$$

The quantum Fisher information

Cramér-Rao bound on the precision of parameter estimation

$$(\Delta \theta)^2 \ge \frac{1}{mF_Q[\varrho, A]},$$

where $F_Q[\rho, A]$ is the quantum Fisher information, and *m* is the number of independent repetitions.

• The quantum Fisher information is

$$F_{Q}[\varrho, A] = 2 \sum_{k,l} \frac{(\lambda_{k} - \lambda_{l})^{2}}{\lambda_{k} + \lambda_{l}} |\langle k|A|l\rangle|^{2},$$

where $\rho = \sum_{k} \lambda_{k} |k\rangle \langle k|$.

The quantum Fisher information is the convex roof of the variance times four

$$F_{Q}[\varrho, A] = 4 \min_{\{p_{k}, |\psi_{k}\rangle\}} \sum_{k} p_{k} (\Delta A)^{2}_{\psi_{k}},$$

where

$$\varrho = \sum_{k} p_{k} |\psi_{k}\rangle \langle \psi_{k}|.$$

GT, D. Petz, Phys. Rev. A 87, 032324 (2013); S. Yu, arXiv1302.5311 (2013); GT, I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014).

Formula based on an optimization in the two-copy space

Two-copy formulation for the variance

$$\Delta H)^{2}_{\Psi} = \operatorname{Tr}(\Omega|\Psi\rangle\langle\Psi|\otimes|\Psi\rangle\langle\Psi|),$$

where we define the operator

$$\Omega = H^2 \otimes \mathbb{1} - H \otimes H.$$

We can reformulate the convex roof as

$$F_{Q}[\varrho, H] = \min_{\substack{\varrho_{12}\\ \varrho_{12}}} \quad 4\operatorname{Tr}(\Omega \varrho_{12}),$$

s. t.
$$\varrho_{12} \in \mathcal{S}',$$

$$\operatorname{Tr}_{2}(\varrho_{12}) = \varrho.$$

Here S' is the set of symmetric separable states.

GT, T. Moroder, and O. Gühne, Evaluating convex roof entanglement measures, Phys. Rev. Lett. 114, 160501 (2015).

Formula based on an optimization in the two-copy space II

We can further reformulate the convex roof as

$$F_{Q}[\varrho, H] = \min_{\substack{\varrho_{12} \\ \varrho_{12}}} \qquad 4 \operatorname{Tr}[(H^{2} \otimes \mathbb{1} - H \otimes H)\varrho_{12}],$$

s. t.
$$\varrho_{12} \in \mathcal{S},$$

$$\operatorname{Tr}_{2}(\varrho_{12}) = \varrho,$$

$$\operatorname{Tr}_{1}(\varrho_{12}) = \varrho.$$

Here S is the set of separable states.

GT and J. Pitrik, Quantum Wasserstein distance based on an optimization over separable states, Quantum 7, 914 (2023).

Outline

Motivatio

Connecting Wasserstein distance to entanglement theory

Background

- Quantum Wasserstein distance
- Quantum Fisher information

Wasserstein distance and separable states

- Quantum Wasserstein distance based on an optimization over separable states
- Relation to entanglement conditions

Quantum Wasserstein distance based on an optimization over separable states

Definition—We can also define

$$D_{\text{sep}}(\varrho, \sigma)^{2} = \frac{1}{2} \min_{\varrho_{12}} \sum_{n=1}^{N} \quad \text{Tr}[(H_{n}^{T} \otimes \mathbb{1} - \mathbb{1} \otimes H_{n})^{2} \varrho_{12}],$$

s. t.
$$\varrho_{12} \in S,$$

$$\text{Tr}_{2}(\varrho_{12}) = \varrho^{T},$$

$$\text{Tr}_{1}(\varrho_{12}) = \sigma,$$

where S is the set of separable states.

GT and J. Pitrik, Quantum Wasserstein distance based on an optimization over separable states, Quantum 7, 914 (2023).

Quantum Wasserstein distance based on an optimization over separable states II

- For two-qubits, it is computable numerically with semidefinite programming.
- For systems of larger dimensions, one can obtain a very good lower bound based on an optimization over states with a positive partial transpose (PPT).
- Even better lower bounds can be obtained.

P. Horodecki, Phys. Lett. A 232, 333 (1997);
A. Peres, Phys. Rev. Lett. 77, 1413 (1996);
A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Phys. Rev. A 69, 022308 (2004).

• The self-distance for N = 1 is

$$D_{\mathrm{sep}}(\varrho,\varrho)^2 = \frac{1}{4}F_Q[\varrho,H_1].$$

Note that

$$I_{\varrho}(A) \leq \frac{1}{4}F_{Q}[\varrho, A] \leq (\Delta A)^{2}_{\varrho}.$$

GT and J. Pitrik, Quantum Wasserstein distance based on an optimization over separable states, Quantum 7, 914 (2023).

Outline

Motivatio

Connecting Wasserstein distance to entanglement theory

Background

- Quantum Wasserstein distance
- Quantum Fisher information

Wasserstein distance and separable states

- Quantum Wasserstein distance based on an optimization over separable states
- Relation to entanglement conditions

• In general,

$$D_{\text{sep}}(\varrho, \sigma) \geq D_{\text{DPT}}(\varrho, \sigma).$$

• If the relation

$$D_{\text{sep}}(\varrho, \sigma) > D_{\text{DPT}}(\varrho, \sigma)$$

holds, then all the optimal ρ_{12} couplings for $D_{\rm DPT}(\rho,\sigma)$ are entangled.

• Thus, an entangled ρ_{12} can be cheaper than a separable one.

Comparison of the two types of Wasserstein distance

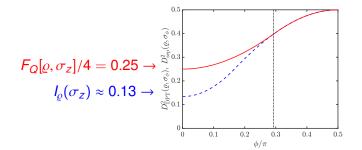
 Let us consider the distance between two single-qubit mixed states

and

$$\varrho = \frac{1}{2} |1\rangle \langle 1|_{x} + \frac{1}{2} \cdot \frac{\pi}{2},$$
$$\sigma_{\phi} = e^{-i\frac{\sigma_{y}}{2}\phi} \varrho e^{+i\frac{\sigma_{y}}{2}\phi},$$

and

$$H_1 = \sigma_z$$



• Entanglement condition: Let us choose a set of H_n such that

$$\frac{1}{2}\sum_{n}\left\langle (H_{n}^{T}\otimes\mathbb{1}-\mathbb{1}\otimes H_{n})^{2}\right\rangle \geq \text{const.}$$

holds for separable states.

• E. g.,
$$\{H_n\} = \{j_x, j_y, j_z\}$$
 and "const."= *j*.

• If the inequality

$$D_{\rm DPT}(\varrho,\sigma)^2 < {\rm const.}$$

holds, then all optimal ρ_{12} states for $D_{\text{DPT}}(\rho, \sigma)$ are entangled.

• Then, we will have a minimal distance

$$D_{\rm sep}(\varrho,\sigma)^2 \ge {\rm const.}$$

Summary

- For the quantum Wasserstein distance, we restrict the optimization to separable states.
- Then, the self-distance equals the quantum Fisher information over four.
- We found a fundamental connection from quantum optimal transport to quantum entanglement theory and quantum metrology.

G. Tóth and J. Pitrik, Quantum 7, 914 (2023).

THANK YOU FOR YOUR ATTENTION! www.gtoth.eu

