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Motivation

Many distance measures are maximal for orthogonal states.

Recently, the Wasserstein distance appeared, which is different
and this makes it very useful.

For the quantum case, surprisingly, the self-distance can be
nonzero.

Can we connect these to entanglement theory and/or quantum
metrology?
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Classical Wasserstein distance - a very long past

Monge, 1781;
Kantorovich, Nobel Memorial Prize in Economic Sciences, 1975.

Distance between probability distributions defined as

Wp(µ, ν) =

(
min
π

∫
d(x , y)pπ(x , y)dxdy

)1/p

,

where d(x , y) is the distance of x and y , π(x , y) is a distribution
with marginals µ(x) and ν(y), p is a number, and p = 2 is a good
choice.

"cost of moving sand from a distribution to the other one."

Used in very many applications in machine learning, engineering,
various optimization problems.



Quantum Wasserstein distance - recent efforts
Many distance measures are maximal for orthogonal states, e.g.,
for the following state-pairs.

In the second example, the two states are further apart from each
other, based on common sense.

The quantum Wasserstein distance should recognize this since it
is related to the "cost of moving sand from a distribution to the
other one."

Indeed, because of that the quantum Wasserstein distance can be
used for machine learning.

G. De Palma, M. Marvian, D. Trevisan, and S. Lloyd,
IEEE Transactions on Information Theory 67, 6627 (2021).



Quantum Wasserstein distance
Definition.—The square of the distance between two quantum
states described by the density matrices % and σ is

DDPT(%, σ)2 =
1
2

min
%12

N∑
n=1

Tr[(HT
n ⊗ 1 − 1 ⊗ Hn)2%12],

s. t. %12 ∈ D,

Tr2(%12) = %T ,

Tr1(%12) = σ,

where D is the set of density matrices, and Hn are Hermitian
matrices.

Note the relation to the representability problem.

G. De Palma and D. Trevisan, Quantum optimal transport with quantum
channels, Ann. Henri Poincaré 22, 3199 (2021).

Examples of other approaches: Życzkowski, Slomczynski; Caglioti, Golse,
Mouhot, Paul; Bistron, Cole, Eckstein, Friedland, Życzkowski.



Self-distance can be nonzero
(unlike in the classical case)

The self-distance of a state is

DDPT(%, %)2 =
N∑

n=1

I%(Hn),

where the Wigner-Yanase skew information is defined as

I%(H) = Tr(H2%) − Tr(H
√
%H
√
%).

This connects Wasserstein distance and quantum metrology.

The classical case corresponds to [%,Hn] = 0. For that,
DDPT(%, %)2 = 0.

G. De Palma and D. Trevisan,
Quantum optimal transport with quantum channels,
Ann. Henri Poincaré 22, 3199 (2021).



How to compute the Wasserstein distance?

The distance can be computed by semidefinite programming.
→ This might be the reason that it has appeared recently.

For a pure % and a mixed σ, the distance is given as

DDPT(%, σ)2

=
1
2

N∑
n=1

[
(∆Hn)2

% + (∆Hn)2
σ + (〈Hn〉% − 〈Hn〉σ)2

]
,

see the following figure, where (∆Hn)2 is the variance.



How to compute the Wasserstein distance? II

N = 1, a single operator H1 is given.

% is pure, σ is mixed.

The quantum Wasserstein distance equals 1/
√

2 times the usual
Euclidean distance between A′ and B′.

GT and J. Pitrik,
Quantum Wasserstein distance based on an optimization over separable states,
Quantum 7, 914 (2023).



Recent efforts to prove the triangle inequality
For any %, τ, and σ the modified triangle inequality holds

DDPT(%, σ) ≤ DDPT(%, τ) + DDPT(τ, τ) + DDPT(τ, σ).

Conjecture: a modified version of the quantum optimal transport
defined by

d(%, ω) :=
√

D2
DPT(%, ω) − [D2

DPT(%, %) + D2
DPT(ω,ω)]/2.

is a metric.
G. De Palma and D. Trevisan, Ann. Henri Poincaré 22, 3199 (2021).

Triangle inequality for quantum Wasserstein divergences

d(τ, %) + d(%, ω) ≤ d(τ, ω)

holds for any mixed τ, ω, any pure % and any quadratic cost + strong numerical
evidence for general states.

G. Bunth, J. Pitrik, T. Titkos, and D. Virosztek, arxiv:2402.13150.
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Quantum metrology

Fundamental task in metrology

ϱθϱ U (θ )=exp (−iAθ )

We have to estimate θ in the dynamics

U = exp(−iAθ).



The quantum Fisher information

Cramér-Rao bound on the precision of parameter estimation

(∆θ)2 ≥
1

mFQ[%,A]
,

where FQ[%,A] is the quantum Fisher information, and m is the
number of independent repetitions.

The quantum Fisher information is

FQ[%,A] = 2
∑
k ,l

(λk − λl)
2

λk + λl
|〈k |A|l〉|2,

where % =
∑

k λk |k〉〈k |.



Formula based on convex roofs

The quantum Fisher information is the convex roof of the variance
times four

FQ[%,A] = 4 min
{pk ,|ψk 〉}

∑
k

pk (∆A)2
ψk
,

where
% =

∑
k

pk |ψk 〉〈ψk |.

GT, D. Petz, Phys. Rev. A 87, 032324 (2013); S. Yu, arXiv1302.5311 (2013);
GT, I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014).



Formula based on concave roofs

The variance is the concave roof of itself

(∆A)2
% = max

{pk ,|ψk 〉}

∑
k

pk (∆A)2
ψk
,

where
% =

∑
k

pk |ψk 〉〈ψk |.

GT, D. Petz, Phys. Rev. A 87, 032324 (2013);
GT, I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014).



A single relation for the QFI and the variance

For any decomposition {pk , |ψk 〉} of the density matrix % we have

1
4

FQ[%,A] ≤
∑

k

pk (∆A)2
ψk
≤ (∆A)2

%,

where the upper and the lower bounds are both tight.

Note that
1
4

FQ[%,A] ≤ (∆A)2
%,

where for pure states we have an equality.

The QFI is strongly related to the variance.



Formula based on an optimization in the two-copy
space

Two-copy formulation for the variance

(∆H)2
Ψ = Tr(Ω|Ψ〉〈Ψ| ⊗ |Ψ〉〈Ψ|),

where we define the operator

Ω = H2 ⊗ 1 − H ⊗ H .

We can reformulate the convex roof as

FQ[%,H] = min
%12

4Tr(Ω%12),

s. t. %12 ∈ S
′,

Tr2(%12) = %.

Here S′ is the set of symmetric separable states.

GT, T. Moroder, and O. Gühne,
Evaluating convex roof entanglement measures,
Phys. Rev. Lett. 114, 160501 (2015).



Formula based on an optimization in the two-copy
space II

We can further reformulate the convex roof as

FQ[%,H] = min
%12

4Tr[(H2 ⊗ 1 − H ⊗ H)%12],

s. t. %12 ∈ S,

Tr2(%12) = %,

Tr1(%12) = %.

Here S is the set of separable states.

GT and J. Pitrik,
Quantum Wasserstein distance based on an optimization over separable states,
Quantum 7, 914 (2023).
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Quantum Wasserstein distance based on an
optimization over separable states

Definition—We can also define

Dsep(%, σ)2 =
1
2

min
%12

N∑
n=1

Tr[(HT
n ⊗ 1 − 1 ⊗ Hn)2%12],

s. t. %12 ∈ S,

Tr2(%12) = %T ,

Tr1(%12) = σ,

where S is the set of separable states.

GT and J. Pitrik,
Quantum Wasserstein distance based on an optimization over separable states,
Quantum 7, 914 (2023).



Quantum Wasserstein distance based on an
optimization over separable states II

For two-qubits, it is computable numerically with semidefinite
programming.

For systems of larger dimensions, one can obtain a very good
lower bound based on an optimization over states with a positive
partial transpose (PPT).

Even better lower bounds can be obtained.

P. Horodecki, Phys. Lett. A 232, 333 (1997);
A. Peres, Phys. Rev. Lett. 77, 1413 (1996);
A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Phys. Rev. A 69, 022308 (2004).



Self-distance

The self-distance for N = 1 is

Dsep(%, %)2 =
1
4

FQ[%,H1].

Note that
I%(A) ≤

1
4

FQ[%,A] ≤ (∆A)2
%.

GT and J. Pitrik,
Quantum Wasserstein distance based on an optimization over separable states,
Quantum 7, 914 (2023).



Outline

1 Motivation
Connecting Wasserstein distance to entanglement theory

2 Background
Quantum Wasserstein distance
Quantum Fisher information

3 Wasserstein distance and separable states
Quantum Wasserstein distance based on an optimization over
separable states
Relation to entanglement conditions

24 / 27



Entanglement of %12

In general,
Dsep(%, σ)≥DDPT(%, σ).

If the relation
Dsep(%, σ)>DDPT(%, σ)

holds, then all the optimal %12 couplings for DDPT(%, σ) are
entangled.

Thus, an entangled %12 can be cheaper than a separable one.



Comparison of the two types of Wasserstein
distance

Let us consider the distance between two single-qubit mixed
states

% =
1
2
|1〉〈1|x +

1
2
·
1

2
,

and
σφ = e−i

σy
2 φ%e+i

σy
2 φ,

and
H1 = σz .

FQ[%, σz ]/4 = 0.25→

I%(σz) ≈ 0.13→



Bounds on the distance

Entanglement condition: Let us choose a set of Hn such that

1
2

∑
n

〈
(HT

n ⊗ 1 − 1 ⊗ Hn)2
〉
≥ const.

holds for separable states.

E. g., {Hn} = {jx , jy , jz} and "const."= j .

If the inequality
DDPT(%, σ)2 < const.

holds, then all optimal %12 states for DDPT(%, σ) are entangled.

Then, we will have a minimal distance

Dsep(%, σ)2 ≥ const.



Summary

For the quantum Wasserstein distance, we restrict the
optimization to separable states.

Then, the self-distance equals the quantum Fisher information
over four.

We found a fundamental connection from quantum optimal
transport to quantum entanglement theory and quantum
metrology.

G. Tóth and J. Pitrik, Quantum 7, 914 (2023).
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