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Quantum Fisher information

Figure 1: Typical process of quantum metrology

▶ H is assumed to be local, that is,

H = h1 + · · · + hN , (1)

where hn’s act on single-subsystems.
▶ Cramér-Rao bound:

(∆θ)2 ≥ 1/FQ[ϱ,H], (2)

where the quantum Fisher information
is given by

FQ[ϱ,H] = 2
∑
k,l

(λk − λl)2

λk + λl
|⟨k|H|l⟩|2,

(3)
with ϱ =

∑
k λk |k⟩⟨k| being the eigen-

decomposition. In general:

4(∆H)2 ≥ FQ[ϱ,H] ≥ 4Iϱ(H), (4)

with Iϱ(H) = Tr(ϱH2)−Tr(√ϱH√
ϱH).

Metrological gain
▶ The metrological gain for a probe state
ϱ and a Hamiltonian H is defined by [1]

gH(ϱ) = FQ[ϱ,H]/F (sep)
Q (H), (5)

where for a given local Hamiltonian H,
separable states can achieve at most

F (sep)
Q (H) =

N∑
n=1

[σmax(hn)−σmin(hn)]2.

(6)
▶ gH(ϱ) in Eq. (5) can be maximized over

local Hamiltonians [1]

g(ϱ) = max
localH

gH(ϱ). (7)

▶ A quantum state is useful for metrology
if g(ϱ) > 1.

▶ Scaling propeties
▶ Shot-noise scaling: for separable

states gH ∼ 1 (FQ ∼ N) at best.
▶ Heisenberg scaling: for entangled

states gH ∼ N (FQ ∼ N2) at best.

The many copy scheme
▶ Quantum entanglement is required for

metrological usefulness [2].
▶ But there are highly entangled pure

states that are not useful [3], while
weakly entangled bound entangled
states can be useful [4, 5].

▶ Can entangled states be made useful
with the idea of having more copies [6]?
Can we have g(ϱ⊗M ) > g(ϱ)?
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Figure 2: M copies of the N -partite state ϱ.

▶ Large class of entangled states become
maximally useful in the limit of many
copies.

▶ Non-useful states can be made useful by
embedding into higher dimension.

Maximal usefulness
Entangled states of N ≥ 2 qudits of dimen-
sion d are maximally useful in the infinite copy
limit if they live in the subspace

{|0..0⟩ , |1..1⟩ , ..., |d− 1, .., d− 1⟩}. (8)

For the proof, use Eq. (4) and calculate
Iϱ⊗M (H), where hn = (D⊗M )An

with D =
diag(+1,−1,+1,−1, ...) and

ϱ =
d−1∑

k,l=0
ckl(|k⟩ ⟨l|)⊗N . (9)

▶ Example: |GHZN ⟩ = (|0⟩⊗N +|1⟩⊗N )√
2 with

noise:
ϱp = p |GHZN ⟩⟨GHZN | (10)

+ (1 − p) (|0⟩⟨0|)⊗N + (|1⟩⟨1|)⊗N

2 .

Figure 3: FQ for different number of copies (M)
of Eq. (10) as a function of the number of parties
N with p = 0.8. The Hamiltonian is hn = σ⊗M

z .

▶ Example: All entangled pure states of
the form

d−1∑
k=0

σk |k⟩⊗N
, (11)

with
∑

k |σk|2 = 1.

Embedding states
The state in Eq. (11) with

∑
k |σk|2 = 1 is

useful for d ≥ 3 and N ≥ 3.

▶ Embedding into higher dimension: The
state

|ψ⟩ = σ0 |0⟩⊗N + σ1 |1⟩⊗N (12)

is useful if 1/N < 4|σ0σ1|2 [3]. But

σ0 |0⟩⊗N + σ1 |1⟩⊗N + 0 |2⟩⊗N (13)

is always useful.
▶ Example: For |ψ⟩⊗M from Eq. (12) with

1/N = 4|σ0σ1|2:

FQ = 4N2[1 − (1 − 1/N)M ]. (14)
▶ Example: Embedding the noisy GHZ

ϱ
(p)
N = p |GHZN ⟩⟨GHZN | + (1 − p)1/2N .

(15)

Figure 4: Embedding (solid) ϱ
(p)
3 into (left) d =

3, (right) d = 4.

ϱ
(p)
3 is metrologically useful if p > 0.4396 and

genuine multipartite entangled if p > 0.4286.

Tolerating phase noise
More copies of a state can protect it from cer-
tain types of noise in a metrological task. In
the following, we take |GHZ⟩ ≡ |GHZ3⟩.

▶ Example: Phase noise for M = 1 copy
of the |GHZ⟩ state. The Hamiltonian is
H = h1 + h2 + h3 with hn = σz.

FQ[|GHZ⟩ ,H] = 36 = 4N2 (maximal),
FQ[ϱ,H] < 36, (16)

with the noisy state being

ϱ = p |GHZ⟩⟨GHZ|+(1−p) |GHZϕ⟩⟨GHZϕ| ,

where
|GHZϕ⟩ = 1√

2
(|000⟩ + e−iϕ |111⟩).

(17)
▶ Example: Tolerating phase noise for
M = 3 copies of the |GHZ⟩ state. The
Hamiltonian is H = h1 + h2 + h3 with
hn = σ⊗M

z .

FQ[|GHZ⟩⊗3
,H] = 36 = 4N2 (maximal),

FQ[ϱ,H] = 36, (18)

where ϱ is some mixture of states with
phase-error on at most 1 copy:

|GHZ⟩ ⊗ |GHZ⟩ ⊗ |GHZ⟩ ,
|GHZϕ1⟩ ⊗ |GHZ⟩ ⊗ |GHZ⟩ ,
|GHZ⟩ ⊗ |GHZϕ2⟩ ⊗ |GHZ⟩ ,
|GHZ⟩ ⊗ |GHZ⟩ ⊗ |GHZϕ3⟩ . (19)
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