

 $(\Delta \theta)^2 \ge 1/\mathcal{F}_Q[\varrho, \mathcal{H}],$ (2)

(3)

where the quantum Fisher information is given by

$$\mathcal{F}_Q[\varrho, \mathcal{H}] = 2\sum_{k,l} \frac{(\lambda_k - \lambda_l)^2}{\lambda_k + \lambda_l} |\langle k|\mathcal{H}|l\rangle|^2,$$

with $\rho = \sum_k \lambda_k |k\rangle \langle k|$ being the eigendecomposition. In general:

 $4(\Delta \mathcal{H})^2 \ge \mathcal{F}_Q[\varrho, \mathcal{H}] \ge 4I_\rho(\mathcal{H}), \quad (4)$ with $I_{\rho}(\mathcal{H}) = \operatorname{Tr}(\rho \mathcal{H}^2) - \operatorname{Tr}(\sqrt{\rho} \mathcal{H}\sqrt{\rho} \mathcal{H}).$

Maximal usefulness

Entangled states of $N \geq 2$ qudits of dimension d are maximally useful in the infinite copy limit if they live in the subspace

▶ $g_{\mathcal{H}}(\varrho)$ in Eq. (5) can be maximized over *local* Hamiltonians [1]

$$g(\varrho) = \max_{\text{local}\mathcal{H}} g_{\mathcal{H}}(\varrho).$$
(7)

(6)

- ► A quantum state is *useful* for metrology if $g(\varrho) > 1$.
- Scaling propeties
 - ► Shot-noise scaling: for separable states $g_{\mathcal{H}} \sim 1 \ (\mathcal{F}_Q \sim N)$ at best.
 - ► Heisenberg scaling: for entangled states $g_{\mathcal{H}} \sim N \left(\mathcal{F}_Q \sim N^2 \right)$ at best.

Embedding states

The state in Eq. (11) with $\sum_k |\sigma_k|^2 = 1$ is useful for $d \geq 3$ and $N \geq 3$.

Figure 2: M copies of the N-partite state ρ .

- ► Large class of entangled states become maximally useful in the limit of many copies.
- ► Non-useful states can be made useful by embedding into higher dimension.

Tolerating phase noise

More copies of a state can protect it from certain types of noise in a metrological task. In the following, we take $|\text{GHZ}\rangle \equiv |\text{GHZ}_3\rangle$.

$$\{|0..0\rangle, |1..1\rangle, ..., |d-1, ..., d-1\rangle\}.$$
(8)
For the proof, use Eq. (4) and calculate
 $I_{\varrho^{\otimes M}}(\mathcal{H})$, where $h_n = (D^{\otimes M})_{A_n}$ with $D =$
diag(+1, -1, +1, -1, ...) and
 $\varrho = \sum_{k,l=0}^{d-1} c_{kl}(|k\rangle \langle l|)^{\otimes N}.$
(9)
• Example: $|\text{GHZ}_N\rangle = \frac{(|0\rangle^{\otimes N} + |1\rangle^{\otimes N})}{\sqrt{2}}$ with
noise:
 $\varrho_p = p |\text{GHZ}_N\rangle\langle \text{GHZ}_N|$
(10)
 $+ (1-p) \frac{(|0\rangle\langle 0|)^{\otimes N} + (|1\rangle\langle 1|)^{\otimes N}}{2}.$

Figure 3: \mathcal{F}_Q for different number of copies (M)

► Embedding into higher dimension: The state

$$\left|\psi\right\rangle = \sigma_0 \left|0\right\rangle^{\otimes N} + \sigma_1 \left|1\right\rangle^{\otimes N} \qquad (12)$$

is useful if $1/N < 4|\sigma_0\sigma_1|^2$ [3]. But

$$\sigma_0 \left| 0 \right\rangle^{\otimes N} + \sigma_1 \left| 1 \right\rangle^{\otimes N} + 0 \left| 2 \right\rangle^{\otimes N} \quad (13)$$

- is always useful.
- ► *Example*: For $|\psi\rangle^{\otimes M}$ from Eq. (12) with $1/N = 4|\sigma_0\sigma_1|^2$:
 - $\mathcal{F}_O = 4N^2 [1 (1 1/N)^M]. \quad (14)$
- ► *Example*: Embedding the noisy GHZ

 $\rho_N^{(p)} = p |\mathrm{GHZ}_N\rangle \langle \mathrm{GHZ}_N| + (1-p)\mathbb{1}/2^N.$ (15)

 \blacktriangleright Example: Phase noise for M = 1 copy of the $|GHZ\rangle$ state. The Hamiltonian is $\mathcal{H} = h_1 + h_2 + h_3$ with $h_n = \sigma_z$.

 $\mathcal{F}_Q[|\mathrm{GHZ}\rangle, \mathcal{H}] = 36 = 4N^2 \text{ (maximal)},$ $\mathcal{F}_Q[\varrho, \mathcal{H}] < 36,$ (16)

with the noisy state being

 $\rho = p |\mathrm{GHZ}\rangle\langle\mathrm{GHZ}| + (1-p) |\mathrm{GHZ}_{\phi}\rangle\langle\mathrm{GHZ}_{\phi}|,$

where $|\mathrm{GHZ}_{\phi}\rangle = \frac{1}{\sqrt{2}}(|000\rangle + e^{-i\phi}|111\rangle).$ (17)

► *Example*: Tolerating phase noise for M = 3 copies of the $|\text{GHZ}\rangle$ state. The Hamiltonian is $\mathcal{H} = h_1 + h_2 + h_3$ with $h_n = \sigma_z^{\otimes M}.$

 $\mathcal{F}_Q[|\mathrm{GHZ}\rangle^{\otimes 3}, \mathcal{H}] = 36 = 4N^2 \text{ (maximal)},$ $\mathcal{F}_Q[\varrho, \mathcal{H}] = 36,$ (18)

of Eq. (10) as a function of the number of parties N with p = 0.8. The Hamiltonian is $h_n = \sigma_z^{\otimes M}$.

► *Example*: All entangled pure states of the form

Figure 4: Embedding (solid) $\rho_3^{(p)}$ into (left) d =3, (right) d = 4.

 $\varrho_3^{(p)}$ is metrologically useful if p > 0.4396 and genuine multipartite entangled if p > 0.4286.

where ρ is some mixture of states with phase-error on at most 1 copy:

 $|\mathrm{GHZ}\rangle \otimes |\mathrm{GHZ}\rangle \otimes |\mathrm{GHZ}\rangle$, $|\mathrm{GHZ}_{\phi_1}\rangle\otimes|\mathrm{GHZ}\rangle\otimes|\mathrm{GHZ}\rangle,$ $|\mathrm{GHZ}\rangle \otimes |\mathrm{GHZ}_{\phi_2}\rangle \otimes |\mathrm{GHZ}\rangle,$ $|\mathrm{GHZ}\rangle\otimes|\mathrm{GHZ}\rangle\otimes|\mathrm{GHZ}_{\phi_3}\rangle$. (19)

References

[1] G. Tóth, T. Vértesi, P. Horodecki, and R. Horodecki, "Activating hidden metrological usefulness,"	[4] G. Tóth and T. Vértesi, "Quantum states with a positive partial transpose are useful for metrology,"
Phys. Rev. Lett. 125 , 020402 (2020).	Phys. Rev. Lett. 120 , 020506 (2018).
[2] L. Pezzé and A. Smerzi, "Entanglement, nonlinear dynamics, and the heisenberg limit," Phys. Rev. Lett. 102 , 100401 (2009).	[5] K. F. Pál, G. Tóth, E. Bene, and T. Vértesi, "Bound entangled singlet-like states for quantum metrol- ogy," Phys. Rev. Res. 3 , 023101 (2021).
[3] P. Hyllus, O. Gühne, and A. Smerzi, "Not all pure entangled states are useful for sub-shot-noise inter-	 [6] M. Navascués and T. Vértesi, "Activation of nonlocal quantum resources," Phys. Rev. Lett. 106, 060403
ferometry," Phys. Rev. A 82, 012337 (2010).	(2011)