

 $(\Delta \theta)^2 \ge 1/\mathcal{F}_Q[\varrho, \mathcal{H}],$ (2)

- ▶ A quantum state is *useful* for metrology if $g(\rho) > 1$.
- ▶ Scaling propeties
	- ▶ Shot-noise scaling: for separable states $g_{\mathcal{H}} \sim 1$ ($\mathcal{F}_Q \sim N$) at best.
	- ▶ Heisenberg scaling: for entangled $\text{states } g_{\mathcal{H}} \sim N \left(\mathcal{F}_Q \sim N^2 \right) \text{at best.}$

where the quantum Fisher information is given by

$$
\mathcal{F}_Q[\varrho, \mathcal{H}] = 2 \sum_{k,l} \frac{(\lambda_k - \lambda_l)^2}{\lambda_k + \lambda_l} |\langle k|\mathcal{H}|l\rangle|^2,
$$

(3) with $\rho = \sum$ λ_k |*k*\/ k | being the eigendecomposition. In general:

 $4(\Delta \mathcal{H})^2 \ge \mathcal{F}_Q[\varrho, \mathcal{H}] \ge 4I_{\varrho}(\mathcal{H}),$ (4) with $I_{\varrho}(\mathcal{H}) = \text{Tr}(\varrho \mathcal{H}^2) - \text{Tr}(\sqrt{\varrho} \mathcal{H} \sqrt{\varrho} \mathcal{H}).$

Entangled states of $N \geq 2$ qudits of dimension *d* are maximally useful in the infinite copy limit if they live in the subspace

of Eq. (10) as a function of the number of parties *N* with $p = 0.8$. The Hamiltonian is $h_n = \sigma_z^{\otimes M}$.

▶ *Example*: All entangled pure states of the form

(6) $\rho_{\mathcal{H}}(\varrho)$ in Eq. (5) can be maximized over *local* Hamiltonians [1]

$$
g(\varrho) = \max_{\text{local}\mathcal{H}} g_{\mathcal{H}}(\varrho). \tag{7}
$$

 σ_0 $|0\rangle$ ⊗*N* $+$ σ_{1} $|1\rangle$ ⊗*N* $+$ 0 $|2\rangle$ ⊗*N* (13)

More copies of a state can protect it from certain types of noise in a metrological task. In the following, we take $|GHZ\rangle \equiv |GHZ_3\rangle$.

▶ *Example*: Tolerating phase noise for $M = 3$ copies of the $|GHZ\rangle$ state. The Hamiltonian is $\mathcal{H} = h_1 + h_2 + h_3$ with $h_n = \sigma_z^{\otimes M}$ $\frac{\otimes M}{z}$.

 $\mathcal{F}_Q [|\mathrm{GHZ}\rangle$ ⊗3 ${\cal H} = 36 = 4N^2 \text{ (maximal)},$ $\mathcal{F}_{Q}[\rho, \mathcal{H}] = 36,$ (18)

where ρ is some mixture of states with phase-error on at most 1 copy:

 $|GHZ\rangle \otimes |GHZ\rangle \otimes |GHZ\rangle$, $\ket{\text{GHZ}_{\phi_1}}\otimes \ket{\text{GHZ}}\otimes \ket{\text{GHZ}} ,$ $\ket{\text{GHZ}}\otimes \ket{\text{GHZ}_{\phi_2}}\otimes \ket{\text{GHZ}} ,$ $|{\rm GHZ}\rangle\otimes|{\rm GHZ}\rangle\otimes|{\rm GHZ}_{\phi_3}\rangle$. ⟩*.* (19)

Figure 2: *M* copies of the *N*-partite state *ϱ*.

- ▶ Large class of entangled states become maximally useful in the limit of many copies.
- ▶ Non-useful states can be made useful by embedding into higher dimension.

Maximal usefulness

$$
\{|0..0\rangle\,,|1..1\rangle\,,...,|d-1,..,d-1\rangle\}.\qquad (8)
$$

For the *proof*, use Eq. (4) and calculate $I_{\varrho^{\otimes M}}(\mathcal{H}),$ where $h_n = (D^{\otimes M})_{A_n}$ with $D =$ diag(+1*,* −1*,* +1*,* −1*, ...*) and *d*−1

$$
\varrho = \sum_{k,l=0}^{\infty} c_{kl} (|k\rangle \langle l|)^{\otimes N}.
$$
 (9)

$$
\sum \text{Example: } |GHZ_N\rangle = \frac{(|0\rangle^{\otimes N} + |1\rangle^{\otimes N})}{\sqrt{2}} \text{ with}
$$
noise:

Figure 3: F*^Q* fo[r](#page-0-0) [d](#page-0-1)ifferent number of copies (*M*)

Figure 4: Embedding (solid) $\varrho_3^{(p)}$ $j_3^{(p)}$ into (left) $d =$ 3, (right) $d = 4$.

Embedding states

The state in Eq. (11) with $\sum_{k} |\sigma_k|^2 = 1$ is useful for $d \geq 3$ and $N \geq 3$.

▶ *Embedding into higher dimension*: The state

$$
\left|\psi\right\rangle = \sigma_0 \left|0\right\rangle^{\otimes N} + \sigma_1 \left|1\right\rangle^{\otimes N} \tag{12}
$$

is useful if $1/N < 4|\sigma_0\sigma_1|^2$ [3]. But

- is always useful.
- ▶ *Example*: For $\ket{\psi}^{\otimes M}$ from Eq. (12) with $1/N = 4|\sigma_0 \sigma_1|^2$:
	- $\mathcal{F}_Q = 4N^2[1 (1 1/N)^M].$ (14)
- ▶ *Example*: Embedding the noisy GHZ

ϱ (*p*) $P_N^{(p)} = p |GHZ_N\rangle\langle GHZ_N| + (1-p)1/2^N.$ (15)

 \blacktriangleright *Example*: Phase noise for $M = 1$ copy of the |GHZ⟩ state. The Hamiltonian is $\mathcal{H} = h_1 + h_2 + h_3$ with $h_n = \sigma_z$.

 $\mathcal{F}_Q[|\mathrm{GHZ}\rangle$, $\mathcal{H}] = 36 = 4N^2 \text{ (maximal)},$ $\mathcal{F}_Q[\varrho, \mathcal{H}] < 36,$ (16)

with the noisy state being

 $\rho = p |GHZ\rangle\langle GHZ| + (1-p) |GHZ_{\phi}\rangle\langle GHZ_{\phi}|$

ϱ (*p*) $\binom{p}{3}$ is metrologically useful if $p > 0.4396$ and genuine multipartite entangled if *p >* 0*.*4286*.*

Tolerating phase noise

where $|\text{GHZ}_{\phi}\rangle =$ 1 $\frac{1}{\sqrt{2}}$ 2 $(|000\rangle + e^{-i\phi}|111\rangle).$ (17)

References

