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Basic task in quantum metrology

H is local, that is,
H = h1 + · · ·+ hN ,

where hn’s are single-subsystem operators of the N-partite system.

Cramér-Rao bound:

(∆θ)2 ≥ 1

FQ [%,H]
,

where the quantum Fisher information is

FQ [%,H] = 2
∑
k,l

(λk − λl)2

λk + λl
|〈k|H|l〉|2,

with % =
∑

k λk |k〉〈k | being the eigendecomposition.
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Scaling properties of the quantum Fisher information

General derivations yield: [G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)]

The maximum for separable states (shot-noise scaling)
[L. Pezzé and A. Smerzi, PRL 102, 100401 (2009)] [P. Hyllus et al., PRA 82, 012337 (2010)]

FQ [%,H] ∼ N
Cramér-Rao

========⇒ (∆θ)2 ∼ 1/N

The maximum for k-entangled states
[P. Hyllus et al., PRA 85, 022321 (2012)] [G. Tóth, PRA 85, 022322 (2012)]

FQ [%,H] ∼ kN
Cramér-Rao

========⇒ (∆θ)2 ∼ 1/kN

The maximum for (genuine multipartite) entangled states (Heisenberg scaling)

FQ [%,H] ∼ N2 Cramér-Rao
========⇒ (∆θ)2 ∼ 1/N2
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The metrological gain for characterizing usefulness

← Performance of % with H
← Best performance of all

separable states with H

For a given % and a local Hamiltonian H = h1 + · · ·+ hN

gH(%) =
FQ [%,H]

F (sep)
Q (H)

,

where the separable limit is

F (sep)
Q (H) =

N∑
n=1

[σmax(hn)− σmin(hn)]2.

If σmax/min(hn) = ±1 → F (sep)
Q (H) = 4N

maxFQ [%,H] = 4N2 for some entangled % with a local H.
gH(%) can be maximized over local Hamiltonians [G. Tóth et al., PRL 125, 020402 (2020)]

g(%) = max
localH

gH(%).

If g(%) > 1 then the state is useful metrologically.
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The metrological gain witnesses multipartite entanglement

Fully-separable states → g ≤ 1 (shot-noise scaling).

Entanglement is required for usefulness but not all entangled states are useful.

PPT entangled states can be useful. [G. Tóth and T. Vértesi, PRL 120, 020506 (2018)]

g identifies different levels of multipartite entanglement.

g > k → metrologically useful (k + 1)-partite entanglement.

g > N − 1 → metrologically useful N-partite/genuine multipartite entanglement (GME).

g = N (FQ = 4N2) is the maximal usefulness (Heisenberg scaling).

There are non-useful GME states [P. Hyllus et al., PRA 82, 012337 (2010)]

What kind of entangled states can be made useful with extended techniques?
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Multicopy scheme with interaction between the copies

The single-subsystem operators hn’s act between the copies:

N parties

H
am

ilt
on

ia
n
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The gain can be improved g(%⊗M) > g(%)! [G. Tóth et al., PRL 125, 020402 (2020)]
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Metrologically useful GME activation

Result

Entangled states of N ≥ 2 qudits of dimension d are maximally useful in the infinite copy limit
if they live in the subspace

{|0..0〉 , |1..1〉 , ..., |d − 1, .., d − 1〉}.

The maximum is attained exponentially fast with the number of copies.

% =
d−1∑
k,l=0

ckl(|k〉〈l |)⊗N

hn = D⊗M , for 1 ≤ n ≤ N

D = diag(+1,−1,+1,−1, ...)

for qubits→ D = σz , and hn = σ⊗Mz
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Examples

The state with |GHZN〉 = 1√
2

(|0〉⊗N + |1〉⊗N)

%N(p) = p |GHZN〉〈GHZN |+ (1− p)
(|0〉〈0|)⊗N + (|1〉〈1|)⊗N

2
.

All entangled pure states of the form
d−1∑
k=0

σk |k〉⊗N .
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Phase noise for N = 3, M = 1 copy

|GHZ〉 = 1√
2

(|000〉+ |111〉) with H = h1 + h2 + h3, where hn = σz so H = σ
(1)
z + σ

(2)
z + σ

(3)
z .

For M = 1 copy:

FQ [|GHZ〉 ,H] = 36 = 4N2 (maximal),

FQ [%,H] < 36,

with
% = p |GHZ〉〈GHZ|+ (1− p) |GHZφ〉〈GHZφ| ,

where |GHZφ〉 = 1√
2

(|000〉+ e−iφ |111〉).

So % is a mixture of |GHZ〉 and the phase-error affected |GHZ〉.
For 1 copy, the quantum Fisher information decreases if there is a phase-error.
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Tolerating phase noise for N = 3, M = 3 copies

|GHZ〉 = 1√
2

(|000〉+ |111〉) with H = h1 + h2 + h3, where hn = σ⊗Mz .

For M = 3 copies:

FQ [|GHZ〉 ⊗ |GHZ〉 ⊗ |GHZ〉 ,H] = 36 = 4N2 (maximal),

FQ [%,H] = 36,

where % is some mixture of states with phase-error on at most 1 copy:

|GHZ〉 ⊗ |GHZ〉 ⊗ |GHZ〉 ,
|GHZφ1〉 ⊗ |GHZ〉 ⊗ |GHZ〉 ,
|GHZ〉 ⊗ |GHZφ2〉 ⊗ |GHZ〉 ,
|GHZ〉 ⊗ |GHZ〉 ⊗ |GHZφ3〉 .

For 3 copies, the quantum Fisher information stays maximal if there is a phase-error on at
most 1 copy.
Adding more copies protects against phase-error on 1 copy.
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Embedding “GHZ”-like states can make them useful

Result

All entangled pure states of the form
d−1∑
k=0

σk |k〉⊗N

with
∑

k |σk |2 = 1 are useful for d ≥ 3 and N ≥ 3.

The state for N ≥ 3 with d = 2

|ψ〉 = σ0 |0〉⊗N + σ1 |1〉⊗N

is useful if 1/N < 4|σ0σ1|2 [P. Hyllus et al., PRA 82, 012337 (2010)].

But with d = 3 ∣∣ψ′〉 = σ0 |0〉⊗N + σ1 |1〉⊗N + 0 |2〉⊗N

is always useful.

The non-useful |ψ〉, embedded into d = 3 (|ψ′〉) becomes useful.
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Conclusions

Investigated the metrological performance of quantum states in the multicopy scenario.

Identified a subspace in which metrologically useful GME activation is possible.

Also improved metrological performance by embedding.

See New J. Phys. 26 023034 (2024)!
Thank you for the attention!
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States outside the previous subspace

For N = 3 with the states

|W 〉 =
1√
3

(|100〉+ |010〉+ |001〉)∣∣W 〉 =
1√
3

(|011〉+ |101〉+ |110〉)

Using the numerical optimization for g(%) [G. Tóth et al., PRL 125, 020402 (2020)].
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Optimal measurements

In the limit of many copies (M � 1)

FQ [%N(p)⊗M ,H] = 4N2 =⇒ (∆θ)2 ≥ 1/FQ [%N(p)⊗M ,H] = 1/4N2

Can we actually reach this limit with simple measurements?
Measuring in the eigenbasis of M (error propagation formula):

(∆θ)2
M =

(∆M)2

|∂θ〈M〉|2
=

(∆M)2

〈i [M,H]〉2
.

For M copies of %N(p) we constructed a simple M such that

(∆θ)2
M =

1 + (M − 1)p2

4MN2p2

For M = 2 copies of %3(p)

M =σy ⊗ σy ⊗ σy ⊗ σz ⊗ 1 ⊗ 1 + σz ⊗ 1 ⊗ 1 ⊗ σy ⊗ σy ⊗ σy
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The general measurements for Observation 1

%(p, q, r) = p |GHZq〉〈GHZq|+ (1− p)[r(|0〉〈0|)⊗N + (1− r)(|1〉〈1|)⊗N ],
with

|GHZq〉 =
√
q |000..00〉+

√
1− q |111..11〉 ,

The following operator, being the sum of M correlation terms

M =
M∑

m=1

Z⊗(m−1) ⊗ Y ⊗ Z⊗(M−m),

where we define the operators acting on a single copy

Y =

{
σ⊗Ny for odd N,

σx ⊗ σ⊗(N−1)
y for even N,

Z = σz ⊗ 1⊗(N−1).

(∆θ)2
M =

1/[4q(1− q)] + (M − 1)p2

4MN2p2
.
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White noise

Observation

Full-rank states of N qudits cannot be maximally useful in the infinite copy limit.

Example: Isotropic state of two qubits

%(p) = p |Ψme〉〈Ψme|+ (1− p)1/22,

where |Ψme〉 = 1√
2

(|00〉+ |11〉).

%(0.75) (top 3 curves) and %(0.35) (bottom 3 curves). hn = σ⊗Mz .
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Embedding mixed states

Embedding the noisy GHZ state

%
(p)
N = p |GHZ〉〈GHZ|+ (1− p)

1

2N
.

Figure: The metrological gain for the state %
(p)
3 (dashed), embedded into d = 3 (left), d = 4 (right).

%
(p)
3 is genuine multipartite entangled for p > 0.428571 [SM Hashemi Rafsanjani et al.,

PRA 86, 062303 (2012)].

%
(p)
3 is useful metrologically for p > 0.439576.
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Error propagation formula

Measuring in the eigenbasis of M we get:

(∆θ)2
M =

(∆M)2

|∂θ〈M〉|2
=

(∆M)2

〈i [M,H]〉2
.

Figure from [G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)].

From the Cramér-Rao bound it follows that for any M
(∆M)2

〈i [M,H]〉2
= (∆θ)2

M ≥
1

FQ [%,H]
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See-saw method for optimizing the gain

Used in [G. Tóth et al., PRL 125, 020402 (2020)].

Minimizing (∆θ)2
M = (∆M)2

〈i [M,H]〉2 ≥
1

FQ [%,H]

with constraints cn1± hn ≥ 0.

For given % and H = h1 + h2 the
symmetric logarithmic derivate gives the
optimum

Mopt = 2i
∑
k,l

λk − λl
λk + λl

|k〉〈l | 〈k |H|l〉
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Scheme without interaction between copies

Consider M copies of an N-partite state %, all undergoing a dynamics governed by the same
Hamiltonian h:

N parties

H
am

ilt
on

ia
n

FQ [%⊗M , h⊗M ] = MFQ [%, h],

but the separable maximum also increases

F (sep)
Q (h⊗M) = MF (sep)

Q (h).

So the gain remains the same

gh⊗M (%⊗M) = gh(%).

No improvement in the gain!
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An example for N = 3

Consider the state

%3(p) = p |GHZ3〉〈GHZ3|+
1− p

2
(|000〉〈000|+ |111〉〈111|) ,

with p = 0.8.

1-copy:
FQ [%3(p),HM=1] = 23.0400,

where HM=1 = σ
(1)
z + σ

(2)
z + σ

(3)
z .

2 copies:
FQ [%3(p)⊗2,HM=2] = 28.0976,

where HM=2 = σ
(1)
z σ

(4)
z + σ

(2)
z σ

(5)
z + σ

(3)
z σ

(6)
z .

F (sep)
Q (HM=1) = F (sep)

Q (HM=2) = 12.
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